
z/OS

MVS Using the
Functional Subsystem Interface

SA22-7641-00

���

z/OS

MVS Using the
Functional Subsystem Interface

SA22-7641-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 143.

First Edition, March 2001

This edition applies to Version 1 Release 1 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

Tables . ix

About This Book . xi
Who This Book Is For. xi
How This Book Is Organized . xi
How to Use This Book . xii
Determining if a Publication is Current xii

Using LookAt to look up message explanations xiii

Summary of Changes . xv

Chapter 1. Functional Subsystem Interface Concepts 1
What is a Functional Subsystem? 1

Managing an FSS . 1
What is a Functional Subsystem Application? 1
What is the Functional Subsystem Interface? 2

Invoking the FSI . 3
FSI Services . 3

FSS Interface Example . 6

Chapter 2. An Overview of FSI Processing 7
FSS Startup . 7
FSI Data Set Processing. 8
FSS Shutdown . 10

Chapter 3. Installing a Functional Subsystem 11
FSS-Related Initialization Statements. 11

JES2 FSS-Related Initialization Statements 11
JES3 FSS-Related Initialization Statements 12

Defining JCL Procedure Used to Start an FSS 12

Chapter 4. The FSIREQ Macro 13
FSIREQ Macro Format . 13
FSIREQ Macro Execution . 15

Chapter 5. FSI Communication 17
Order Processing - Communication from JES to the FSS/FSA 17

The FSI Order Routine . 17
Order Processing Parameter List 18

Responding to an Order - Communication from the FSS/FSA to JES 20
Send Processing in Response to an Order. 20
Issuing the FSIREQ SEND Request 23
Unsolicited Send Processing 23
CONNECT/DISCONNECT Processing in Response to an Order 24

Post Processing . 24
The FSI Post Routine . 25
Function of the FSI Post Routine 25
Post Processing Parameter List. 25

Types of Orders . 26
Addressing Mode - AMODE . 27

Pointer-defined Linkage. 27

© Copyright IBM Corp. 1988, 2001 iii

Residency Mode - RMODE . 27

Chapter 6. Establishing FSS/JES Communication 29
Starting an FSS . 29
Initializing the FSS Address Space 30

Retrieving the MVS START Command and Token 31
Preparing for FSS CONNECT 32

Initializing the FSS Level FSIREQ CONNECT Parameter List 32
Issuing the FSS Level FSIREQ CONNECT Request 35

FSS CONNECT Processing . 35
How JES Handles Logic Errors and Abends 35

How JES Monitors Timing of FSS CONNECT 36

Chapter 7. Establishing FSA/JES Communication 37
Processing the START FSA Order 38

Initializing the FSA . 41
FSA Successfully Started . 42

Preparing for FSA CONNECT 42
FSA CONNECT Processing 44

FSA Could Not Be Started. 45

Chapter 8. Starting an FSS Device 47
Processing the START Device Order 47
Notifying JES of Device Status 49

SEND Processing . 49

Chapter 9. Issuing Data Requests to JES 51
Getting a SYSOUT Data Set (GETDS) 51

Providing an FSA Checkpoint Area 53
Initializing the GETDS Parameter List 53
Issuing the FSIREQ GETDS Request 54
JES GETDS Processing . 54
No Work Exists for Printing 65
Notifying JES that the Data Set Reached the OOP 67

Getting SYSOUT Records from an Acquired Data Set 69
Specific Record Retrieval . 71
Initializing the GETREC Parameter List 71
Issuing the FSIREQ GETREC Request 72
JES GETREC Processing . 73

Releasing a SYSOUT Record 76
Initializing the FREEREC Parameter List 77
Issuing the FSIREQ FREEREC Request 79
JES FREEREC Processing 79

Releasing a SYSOUT Data Set 79
Data Set Processing Status 80
Initializing the RELDS Parameter List 81
Issuing the FSIREQ RELDS Request 82
JES RELDS Processing . 82
SMF Record Writing . 82

Requesting a Checkpoint of Processing 83
Purpose of the FSI CHKPT Service 83
Preparing for Checkpointing 83
JES CHKPT Processing . 85

Chapter 10. Responding to Device Orders From JES. 87
The Query Order . 87

iv z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Examples of JES Commands Resulting in a Query Order 87
Processing the Query Order 87

The Set Order . 89
Examples of JES Commands Resulting in a Set Order 89
Processing the Set Order . 89

The Synch Order . 91
Examples of JES Commands Resulting in a Synch Order 91
Processing the Synch Order 92

The Intervention Order . 97
Processing the Intervention Order 97

Notifying JES of Order Completion 99
SEND Processing . 100

Chapter 11. Stopping an FSS Device 101
Processing the STOP Device Order 101
Notifying JES When the Device is Stopped 103

SEND Processing . 104

Chapter 12. Stopping an FSA 105
Processing the STOP FSA Order. 105
Preparing for FSA Disconnect 107

Initializing the FSIREQ DISCONNECT Parameter List 107
Issuing the FSIREQ DISCONNECT Request 108

FSA-Initiated Termination. 108
Initializing the FSIREQ SEND Parameter List 109
Issuing the FSIREQ SEND Request. 110
SEND Processing . 110

DISCONNECT FSA Processing 110
How JES Handles Logic Errors and Abends 110

How JES Monitors Timing of FSA DISCONNECT 110

Chapter 13. Stopping an FSS 111
Processing the STOP FSS Order 111
Preparing for FSS Disconnect 113

Initializing the FSIREQ DISCONNECT Parameter List 113
Issuing the FSIREQ DISCONNECT Request 114

DISCONNECT FSS Processing 114
How JES Handles Logic Errors and Abends 114

How JES Monitors Timing of FSS DISCONNECT 115

Chapter 14. FSS Output Descriptor Support 117
The Scheduler JCL Facility . 117

An Overview of OUTPUT Processing 117
Using SJF Services . 118

Requirements for Using SJF Services 118
The Scheduler JCL Facility RETRIEVE Request 119

Initializing the Keyword List 119
Establishing a Storage area 119
Initializing the SJF RETRIEVE Parameter List 119
Issuing the SJFREQ RETRIEVE Request 121
SJF RETRIEVE Processing. 121

Chapter 15. FSI Trace . 123
Using GTF to Trace FSI Communication 123

Starting GTF . 123
Specifying GTF Trace Options 123

Contents v

Recreating the Problem . 125
Stopping GTF . 125

Viewing FSI Trace Data . 126
Reading GTF Records . 126
Summary of FSI Trace Output 127

Appendix A. FSIREQ Parameter List. 133
CDFPAIRS . 133
Orders Parameter Section . 133

Common Order Header . 133
START/STOP Order Data Section 134

Device Initialization Area for START FSA Order 134
Message Routing Information Area for Start FSA Order 134

SET Order Data Section . 134
SYNCH Order Data Section. 135
INTERVENTION Order Data Section 135

IAZRESPA - Order Response Data Area 135
GETDS Function Dependent Area 136

GETDS Function Dependent Extension Area 136
IAZJSPA - JES Job Separator Page Data Area 136
IAZJSPA - JES Dependent Section 136
IAZJSPA - User Dependent Section 137

GETREC Function Dependent Area 137
IAZIDX - Index Returned by GETREC 137
Index Header Area . 137
Index Entry . 137

FREEREC Function Dependent Area 137
RELDS Function Dependent Area 138
CHKPT Function Dependent Area 138

IAZCHK - FSI Checkpoint Record 138
POST Dependent Section . 139
SEND Dependent Section . 139
FSIUDATA - User Trace Data Area 139

Appendix B. Numeric Values of FSI Services and Orders 141

Appendix C. Notices . 143
Programming Interface Information 144
Trademarks. 145

Glossary . 147

Index . 149

vi z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Figures

1. Address Space Communication Between JES2 and the FSS 2
2. Address Space Communication Between JES3 and the FSS 3
3. Overview of FSS Startup Processing . 7
4. Overview of FSI Data Set Processing. 8
5. Overview of FSI Shutdown Processing . 10
6. Parameter List for Order Processing. 18
7. Parameter List for Send Processing . 21
8. Parameter List for Post Processing . 25
9. An Overview of FSI Startup Processing . 29

10. FSSDEF/MVS Start Command Parameter Relationships 30
11. FSIREQ Parameter Lists for FSS CONNECT Processing 32
12. An Overview of FSI Startup Processing . 37
13. FSIREQ Parameter Lists for the START FSA Order 38
14. FSIREQ Parameter Lists for FSA CONNECT . 42
15. An Overview of FSI Startup Processing . 47
16. FSIREQ Parameter Lists for the Start Device Order 48
17. An Overview of FSI Data Set Processing . 52
18. FSIREQ Parameter Lists GETDS Processing . 53
19. The IAZJSPA (Job Separator Page Area) . 59
20. An Overview of Data Set Processing . 65
21. FSIREQ Parameter Lists for POST Processing . 66
22. FSIREQ Parameter Lists for Send Processing . 68
23. An Overview of Data Set Processing . 69
24. The Index (Mapped by IAZIDX) Returned From the GETREC Request 70
25. FSIREQ Parameter Lists for GETREC Processing 74
26. An Overview of Data Set Processing . 77
27. FSIREQ Parameter Lists for FREEREC Processing 78
28. An Overview of Data Set Processing . 80
29. FSIREQ Parameter Lists for RELDS Processing 81
30. FSIREQ Parameter Lists for CHKPT Processing 84
31. FSIREQ Parameter Lists for the QUERY Order 88
32. FSIREQ Parameter Lists for SET Order Processing 90
33. FSIREQ Parameter Lists for SYNCH Order Processing. 92
34. FSIREQ Parameter Lists for Intervention Order Processing 97
35. An Overview of FSI Shutdown Processing . 101
36. FSIREQ Parameter Lists for STOP Device Processing 102
37. An Overview of FSI Shutdown Processing . 105
38. FSIREQ Parameter Lists for STOP FSA Processing 106
39. An Overview of FSI Shutdown Processing . 111
40. FSIREQ Parameter Lists for STOP FSS Processing 112
41. OUTPUT JCL Processing . 118
42. SJF Control Blocks Returned from SJF RETRIEVE. 122

© Copyright IBM Corp. 1988, 2001 vii

viii z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Tables

1. FSS Interface Example Components . 6
2. Orders and Responses . 26
3. IAZJSPA Macro . 60
4. FSI Trace Output Summary . 128
5. Numerical Values of FSIFUNC . 141
6. Numerical Values of ORDID . 141

© Copyright IBM Corp. 1988, 2001 ix

x z/OS V1R1.0 MVS Using the Functional Subsystem Interface

About This Book

Who This Book Is For
This book is intended for anyone responsible for writing and installing a functional
subsystem (FSS) and its functional subsystem applications (FSA). This book
describes the functional subsystem interface (FSI) and shows how the FSS and a
job entry subsystem (JES) communicate using the FSI.

How This Book Is Organized
The organization and content of each section are:

v “Chapter 1. Functional Subsystem Interface Concepts” on page 1, briefly
describes functional subsystem concepts, terminology, address space
relationships, and services that the functional subsystem interface supplies.

v “Chapter 2. An Overview of FSI Processing” on page 7, describes the overall flow
of processing from the time the FSS is started, through data set processing, until
the FSS is terminated.

v “Chapter 3. Installing a Functional Subsystem” on page 11, provides examples of
JES initialization statements needed to install a functional subsystem and a
sample JCL procedure.

v “Chapter 4. The FSIREQ Macro” on page 13, presents the FSIREQ macro and
explanations of the macro parameters.

v “Chapter 5. FSI Communication” on page 17, describes the communication
mechanisms that allow JES to make service requests to the FSS or FSA and
allows the FSS or FSA to respond to JES.

v “Chapter 6. Establishing FSS/JES Communication” on page 29, describes the
processing for starting the functional subsystem.

v “Chapter 7. Establishing FSA/JES Communication” on page 37, describes the
processing for starting a functional subsystem application that is associated with
an individual device.

v “Chapter 8. Starting an FSS Device” on page 47, describes the processing for
starting a device that runs under an FSS.

v “Chapter 9. Issuing Data Requests to JES” on page 51, describes how to obtain
and free a data set and its records, and how to ask JES to record checkpoint
information.

v “Chapter 10. Responding to Device Orders From JES” on page 87, describes the
processing for orders that request a change in device or data set characteristics,
affects the flow of data through the device, or requests information about a data
set currently being processed by an FSA device.

v “Chapter 11. Stopping an FSS Device” on page 101, describes the processing
involved in stopping a device that is running under an FSS.

v “Chapter 12. Stopping an FSA” on page 105, describes the processing for
stopping a functional subsystem application that is associated with an individual
device.

v “Chapter 13. Stopping an FSS” on page 111, describes the processing for
terminating the functional subsystem address space.

v “Chapter 14. FSS Output Descriptor Support” on page 117, describes the
scheduler JCL facility and how it interfaces with JES and the FSS to provide FSS
scheduler work block support.

© Copyright IBM Corp. 1988, 2001 xi

v “Chapter 15. FSI Trace” on page 123, describes FSI trace facilities useful for
diagnosing problems with the FSI.

v “Appendix A. FSIREQ Parameter List” on page 133, contains storage
representations for the fields in the IAZFSIP mapping macro and other related
storage.

v “Appendix B. Numeric Values of FSI Services and Orders” on page 141, provides
the numeric values for the FSI services.

v “Appendix C. Notices” on page 143provides notices, programming interface
information, and trademark information.

v A Glossary and Index are also provided.

How to Use This Book
Use “Chapter 1. Functional Subsystem Interface Concepts” on page 1, and
“Chapter 2. An Overview of FSI Processing” on page 7, to familiarize yourself with
the terminology and processing related to the functional subsystem interface.

Use “Chapter 3. Installing a Functional Subsystem” on page 11, to install the
functional subsystem.

Then use “Chapter 4. The FSIREQ Macro” on page 13, through “Chapter 14. FSS
Output Descriptor Support” on page 117, when you are coding your functional
subsystem and your functional subsystem applications. These chapters explain how
to use the FSI to make requests to JES and explains how JES will respond to those
requests. These sections explain the values that JES expects to receive from your
functional subsystem during processing. These sections also show the values that
your functional subsystem can expect to receive from JES when your FSS receives
control.

Use “Chapter 15. FSI Trace” on page 123, to diagnose any problems your FSS may
encounter.

Determining if a Publication is Current
As needed, IBM changes its information. For a given book, updates to the hardcopy
and associated BookManager softcopy are usually available at the same time.
Sometimes, however, the updates to hardcopy and softcopy are available at
different times. Here’s how to determine if you are looking at the most current copy
of a book:

1. At the end of the order number there is a dash followed by two digits, often
called the dash level. A book with a higher dash level is more current than one
with a lower dash level. For example, in the book order number GC28-1608-06,
the dash level 06 means that the book is more current than previous levels,
such as 05 or 04.

2. If a hardcopy book and a softcopy book have the same dash level, it is possible
that the softcopy book is more current than the hardcopy book. Check the dates
shown in the Summary of Changes. The softcopy book might have a more
recently dated Summary of Changes than the hardcopy book.

3. To compare softcopy books, you can check the last two characters of the
softcopy filename (also called the book name). The higher the number, the more
recent the book. For example, IEA4E802 is more recent than IEA4E801. Also,
next to the book titles in the CD-ROM booklet and the readme files, there is a
change code (N, E, S, or T) that indicates ether a publication is new or
changed, as follows:

xii z/OS V1R1.0 MVS Using the Functional Subsystem Interface

N=new
E=softcopy enhancement
S=service change
T=technical change

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:
lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

About This Book xiii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

xiv z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Summary of Changes

Summary of Changes
for SA22-7641-00
z/OS Version 1 Release 1

The book contains information also presented in OS/390 Using the Functional
Subsystem Interface.

© Copyright IBM Corp. 1988, 2001 xv

xvi z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 1. Functional Subsystem Interface Concepts

The functional subsystem interface (FSI) allows communication between JES and
your functional subsystem (FSS) and functional subsystem application (FSA). The
FSS/FSA allows installations to support sophisticated devices.

Besides using an FSS to drive sophisticated printers, the FSS can also drive a
simple device, or a process that is not a device at all. This chapter defines the key
concepts related to the functional subsystem interface.

What is a Functional Subsystem?
A functional subsystem (FSS) is a collection of programs residing in an address
space separate from JES that communicates with JES to provide a JES-related
function, such as print processing. An FSS extends the scope of JES processing.
Because an FSS operates in its own address space, it functions independently of
JES in several areas.

An FSS is responsible for:

v The management of storage resources that it needs during data set processing
including print buffers.

v Its own recovery and serviceability.

v Its performance and accounting measurements.

v The security of its own resources.

Managing an FSS
An FSS is dependent on JES for control and services. JES manages an FSS in the
following ways:

v The FSS is defined during JES initialization using JES initialization statements
and parameters.

v JES initiates the FSS address space.

v JES provides services for use by the FSS. FSS messages sent to the JES
operator are in a format chosen by the writer of the FSS.

v JES controls its own resources, such as the job queues and spool.

v JES controls output scheduling for FSS-controlled devices. The FSS application
does not control selection criteria when acquiring data sets for print processing.
JES uses its own work selection criteria to provide the proper data sets to the
FSS application.

v JES coordinates the termination and restart of the FSS.

What is a Functional Subsystem Application?
A functional subsystem application (FSA) is a collection of programs residing in the
FSS address space that control one device. There can be multiple FSAs per FSS.
IBM recommends that each of the FSAs for the FSS be a separate task. The FSA
can be thought of as a logical subset of the FSS and is the lowest level of
connection with JES.

© Copyright IBM Corp. 1988, 2001 1

What is the Functional Subsystem Interface?
JES and the FSS/FSA communicate through the functional subsystem interface
(FSI). The FSI is a one-level interface which provides two way communication. The
FSI consists of a set of macro-invoked service routines provided by both JES and
the FSS/FSA. These service routines are:

v JES routines that reside in the FSS address space

v SSI routines that JES provides

v FSS/FSA-supplied routines.

Figure 1 shows the types of address space communication (SSI,XM, and FSI) that
exist between JES2 and the FSS. Figure 2 on page 3 shows the types of address
space communication (SSI and FSI) that exist between JES3 and the FSS.

COMMON AREA

FSS ADDRESS SPACEJES2 ADDRESS SPACE

FSS PROCESSOR

JES2
SPOOL

PRINTER

FSI
SSI J

E

S

2

A
P
P
L
I
C
A
T
I
O
N

XM

FSS FUNCTIONS

FSA FUNCTIONS

XX

Figure 1. Address Space Communication Between JES2 and the FSS

FSI Concepts

2 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Invoking the FSI
The FSS/FSA and JES use the FSIREQ macro to invoke functional subsystem
interface (FSI) services. The FSIREQ macro allows JES to issue orders to the
FSS/FSA and the FSS/FSA to issue requests to JES.

The IAZFSIP mapping macro maps the FSIREQ function-dependent parameter lists.
The FSS/FSA and JES use these parameter lists to pass information to each other.
On the FSIREQ macro call, the caller specifies the service requested, the
subsystem (FSS or JES) that provides the service, and the address of the caller’s
parameter list. “Chapter 4. The FSIREQ Macro” on page 13 describes each operand
on the FSIREQ macro and “Appendix A. FSIREQ Parameter List” on page 133
illustrates the storage maps for the associated FSIREQ parameter lists.

FSI Services
FSI services are actually JES and FSS/FSA supplied routines that allow interaction
between JES and the FSS/FSA. FSI services fall into three categories:

v Communication services

v Data access services

v Control services.

Communication Services
The functions of the individual FSI communication services are:

v FSI CONNECT

The FSS and FSA invoke the FSI CONNECT service to establish the functional
subsystem interface to JES. FSI CONNECT processing tells JES that the

COMMON AREA

FSS ADDRESS SPACEJES3 GLOBAL ADDRESS SPACE

WRITER DSP

JES3
SPOOL

PRINTER

FSISSI
J

E

S

3

A
P
P
L
I
C
A
T
I
O
N

FSS FUNCTIONS

FSA FUNCTIONS

XX

Figure 2. Address Space Communication Between JES3 and the FSS

FSI Concepts

Chapter 1. Functional Subsystem Interface Concepts 3

FSS/FSA is started. It also identifies to the FSI the addresses of FSS/FSA
routines that are to receive control when JES issues the FSIREQ macro and the
addresses of JES routines that are to receive control when the FSS/FSA issues
the FSIREQ macro.

v FSI DISCONNECT

The FSS and FSA invoke the FSI DISCONNECT service to terminate connection
with JES.

v FSI ORDER

JES invokes the FSI ORDER service to issue orders to the FSS/FSA. When an
operator issues a JES command that requires the participation of an FSS/FSA,
JES converts that command into an order. An order represents a unit of work
known to both JES and the FSS/FSA. The FSS/FSA performs the actions
associated with the order and then responds to JES with the required
information. The valid orders are:

Start FSA
Requests the FSS to start the FSA. When the FSA is started, the FSA
responds to JES with the FSA CONNECT request.

Start Device
Requests the FSA to start the device. Once the device is started, the FSA
can begin requesting data sets for processing.

Stop Device
Requests the FSA to stop the device. Once the FSA stops the device, it does
not request any more work.

Stop FSA
Requests the FSS to stop the FSA. When the FSA completes its processing,
it responds to JES with an FSA DISCONNECT request.

Stop FSS
Requests the FSS to shut down. When the FSS completes its processing, it
responds to JES with an FSS DISCONNECT request.

Query
Requests the FSA to obtain information about the data set currently at the
operator observation point (OOP).

Set
Requests the FSA to set or change device characteristics.

Synch
Requests the FSA to synchronize its processing to the point of actual
printing. JES issues a synch order when an action needs to be performed
against the data set currently at the operator observation point (OOP) of the
device.

Intervention
Requests the FSA to prepare the device for operator intervention. JES issues
this order when a change in device setup (such as a change in forms) that
involves operator intervention is required.

v FSI SEND

The FSS/FSA invokes the FSI SEND service to send an asynchronous response
to a JES order. The FSS/FSA can also use the SEND to send unsolicited
material to the JES.

FSI Concepts

4 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Data Access Services
The functions of the individual FSI data access services are:

v FSI GETDS

The FSA invokes the FSI GETDS service to request access to a JES spool data
set and its characteristics. The GETDS service is functionally equivalent to
allocating and opening a data set.

v FSI GETREC

The FSA invokes the FSI GETREC service to obtain one or more records from a
data set obtained by use of the FSI GETDS service.

v FSI FREEREC

The FSA invokes the FSI FREEREC service to free one or more logical records
that it previously acquired with a GETREC request.

v FSI RELDS

The FSA invokes the FSI RELDS service to release a data set previously
obtained by the FSI GETDS service. The RELDS service is functionally
equivalent to closing and unallocating a data set.

v FSI CHKPT

The FSA invokes the FSI CHKPT service to request JES to record checkpoint
information for the JES spool data set currently being processed on the FSA
device.

The checkpoint information recorded is used for restart situations. For example, if
processing of the data set is interrupted, the FSA returns the data set to JES with
an incomplete processing status. When the data set is again selected for
processing, the device can begin printing the data set from the point of the last
valid checkpoint taken.

Control Services
The FSI POST service is the only FSI control service. JES invokes the FSI POST
service to signal completion of asynchronous requests. If no work is available to
satisfy a GETDS request, JES returns control to the FSA indicating it will satisfy the
request at a later time. When work becomes available, JES issues an FSI POST
request to notify the FSA that GETDS requests can now be satisfied and that the
FSA should reissue the request.

The following table lists each FSI service and shows the type of interaction it
allows, the valid caller(s) of the service, and the subsystem/application that provides
the service.

FSI Service Type of Interaction Used by Provided by

CHKPT Data Access FSA JES

CONNECT Communication FSS/FSA JES

DISCONNECT Communication FSS/FSA JES

FREEREC Data Access FSA JES

GETDS Data Access FSA JES

GETREC Data Access FSA JES

ORDER Communication JES FSS/FSA

POST Control JES FSA

RELDS Data Access FSA JES

SEND Communication FSS/FSA JES

FSI Concepts

Chapter 1. Functional Subsystem Interface Concepts 5

FSS Interface Example
IBM provides a functional subsystem (FSS) interface example in SYS1.SAMPLIB.
The example is a working illustration of how you might implement functional
subsystem interface (FSI) functions. This example is meant as a starting point for
applications programmers to develop their own FSS applications, which can include
functions such as driving output devices, for example, plotters and microfiche
writers, or other devices.

The example is written in S/370 basic assembler language. Its component
members, as well as a brief description of each, are listed in Table 1 below.

Table 1. FSS Interface Example Components

Member Name Description

IAZSFSS Module that operates the (main) FSS task. This module contains the
entry point for the load module. It also contains
general documentation for the FSS interface example.

IAZSFSA Module that operates the FSA subtask(s).

IAZSFSD Module that operates an output device.

IAZSFSJ The module that facilitates communication between JES and the FSS
or an FSA.

IAZSFSE Module that provides recovery for the FSS and FSA tasks.

IAZSSCB
IAZSDTE
IAZSACB
IAZSDCB
IAZSPLE
IAZSSMF
IAZSMSG
IAZSOPT

Macros that describe data areas specific to the FSS interface example.

In addition to providing an illustration of basic FSI functions, the example also
provides function and/or logic that may or may not be appropriate for your
general-purpose FSS. These functions appear throughout the code and are denoted
in comment boxes that contain the following special header:

* <<<<<<<<<<<< SUPPLEMENTARY INFORMATION >>>>>>>>>>>>>>>>>>>>> *

As appropriate for your application, you should delete and/or modify these
additional functions or logic.

The example is meant only as a documentation and coding shell for the general
flow for JES/FSS processing and does not:

v Use all of the functions of the FSI

v Fully complete, in every case, a function that was initiated. (For example, you
might receive console messages indicating a function completed, when in fact, it
did not actually perform the function.)

v Show a definitive way to develop an FSS

v Attempt to match the requirements of any particular installation-written FSS.

FSI Concepts

6 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 2. An Overview of FSI Processing

Functional subsystem interface (FSI) processing consists of three major consecutive
stages: FSS startup, data set processing, and FSS termination. Figure 3 illustrates
the logical processing steps within each stage of FSI processing and shows the
flow of control between JES and the FSS for each step.

FSS Startup

Figure 3 shows how JES starts an FSS, one or more FSAs associated with the
FSS, and the FSA printer.

1. JES starts the FSS either during JES initialization or in response to an operator
command to start a printer under control of the FSS. JES gets information from
the FSS initialization statement to use in the MVS START command. JES then
issues the MVS START command causing the creation of the FSS address
space.

2. Once the FSS address space is created, the FSS performs initialization. When
initialization is complete, the FSS responds to JES with an FSIREQ CONNECT
request. Successful completion of FSS CONNECT processing signals JES to
issue a START FSA order.

3. JES issues the START FSA order to the FSS order routine.

4. The FSS order routine receives the order and then the FSS attaches an FSA
task to perform FSA and device initialization. When FSA initialization is
complete, the FSA responds to JES with an FSIREQ CONNECT request.
Successful completion of FSA CONNECT processing signals JES to issue a
START DEVICE order.

5. JES issues the START DEVICE order to the FSA order routine.

6. The START DEVICE order indicates to the FSA that JES is ready to receive
GETDS requests. The FSIREQ SEND request notifies JES that the FSA has
completed the order. At this point, the FSA can issue GETDS requests.

JES CODE FSS/FSA CODE

Address space created
FSS Initialization
FSS Connect Request
FSIREQ REQUEST=FSICON

Receive response of started device

START procname...

Issue Start FSA
FSIREQ REQUEST=FSIORDER

Issue start device
FSIREQ REQUEST=FSIORDER

Initialize PRINTER
FSIREQ REQUEST=FSISEND

WAIT

FSS waits for orders

FSA waits for orders

WAIT

WAIT

FSA Initialization
FSA Connect Request
FSIREQ REQUEST=FSICON

1

2

3

4

6

5

Figure 3. Overview of FSS Startup Processing

© Copyright IBM Corp. 1988, 2001 7

FSI Data Set Processing

Once the device is started, the FSA can begin issuing data requests to JES.
Figure 4 shows the FSI data set processing steps.

1. The FSA issues an FSIREQ GETDS request to JES to obtain a JES spool data
set and its attributes for processing. The GETDS service is functionally
equivalent to allocating and opening a data set.

2. If work is available, JES immediately satisfies the GETDS request. JES assigns
a data set to the FSA and returns data set related information in the GETDS
parameter list.

a. If no work exists for print processing, JES returns control to the FSA. The
FSA will not issue GETDS requests until JES notifies the FSA by using the
FSI POST service. JES will issue an FSIREQ POST request when JES
determines that work has become available.

b. When work becomes available, JES issues a FSIREQ POST request.

c. The FSA POST routine gets control and posts the FSA task to reissue the
GETDS request.

d. When JES receives the GETDS request, JES satisfies the GETDS request
as was described above.

JES CODE FSA CODE

Works is available
Select WORK
Fill WORK REQUEST

Select WORK
Tell FSA work exists
FSIREQ REQUEST=FSIPOST

Process RELDS
Closes the data set and deallocates
its storage

No work found
Return from GETDS
Indicating no work available

Fill WORK REQUEST

Build INDEX and Parameter List

Process FREEREC

PROCESS RECORD

Next GETDS

Issue GETDS Request
FSIREQ REQUEST=FSIGDS

Respond to Post
FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST
FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request
FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST
FSIREQ REQUEST=FSIGREC

WAIT

WAIT

WAIT

WAIT

1

2

2c

2d
3

5

7

4

6

8

2a

2b

Figure 4. Overview of FSI Data Set Processing

FSI Overview

8 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

3. Once the FSA has obtained access to a SYSOUT data set, it uses the data set
identifier returned to issue a FSIREQ GETREC request to JES to obtain logical
records for the data set.

4. When JES receives the GETREC request, it obtains one or more logical record
pointers using an index table. JES then returns a pointer to the index in the
GETREC parameter list to the FSA.

5. The FSA processes the records associated with the index and then issues a
FSIREQ FREEREC request to release the storage associated with these logical
records. Storage resources are a fixed quantity. It is important that the FSA
issue FREEREC requests or record processing may eventually not be able to
continue because of a buffer shortage.

6. JES processes the FREEREC request by releasing the storage for the specified
record. This storage is then available for subsequent GETREC processing.

7. After all of the records in a data set have been processed or when end-of-file is
reached, the FSA issues a FSIREQ RELDS request to return the data set to
JES.

8. When JES receives the RELDS request, it closes the data set and deallocates
the storage resources associated with it. If the FSA indicated that valid
checkpoint information exists for the data set, JES writes the final checkpoint
record to spool. JES then waits for the next GETDS request.

FSI Overview

Chapter 2. An Overview of FSI Processing 9

FSS Shutdown

Figure 5 shows how JES stops a printer, the FSA associated with that printer, and
the corresponding FSS.

1. When an operator issues a command to either drain a specific device or to shut
down JES cleanly, JES issues a STOP device order to the FSA order routine for
the FSA controlling that device.

2. The FSA order routine processes the order and the appropriate FSA task stops
the printer device. When the printer is stopped, the FSA must issue an FSIREQ
SEND request to notify JES that the FSA has completed the order and that the
printer is stopped. At this point, JES can pass another order to the FSA.

3. After the FSA notifies JES that a device was stopped, JES issues a STOP FSA
order to the FSS order routine.

4. The STOP FSA order causes the FSA to perform cleanup processing and then
terminate itself by issuing an FSA-level DISCONNECT to JES. When JES
receives the FSA-level DISCONNECT it validates the information and then
issues a message the operator.

5. An FSS receives a STOP FSA order for every active FSA that it controls. After
all active FSAs are stopped, JES issues the STOP FSS order to the FSS order
routine.

6. The STOP FSS order causes the FSS to perform cleanup processing and then
terminate itself by issuing an FSS-level DISCONNECT to JES. JES validates
the FSS information and terminates the FSS address space.

JES CODE FSA CODE

Handle response
Issue stop FSA
FSIREQ REQUEST=FSIORDER

Stop all active FSAs
Issue stop FSS
FSIREQ REQUEST=FSIORDER

Handle response

Stop device
FSIREQ REQUEST=FSISEND

Clean up FSA structure
FSIREQ REQUEST=FSIDCON

Clean up FSS structure
FSIREQ REQUEST=FSIDCON

WAIT

WAIT

WAIT

Issue stop device
FSIREQ REQUEST=FSIORDER

Handle response
Put out appropriate message

1

2

3

4

6

5

Figure 5. Overview of FSI Shutdown Processing

FSI Overview

10 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 3. Installing a Functional Subsystem

To install an FSS, you need to:

v Code FSS-related initialization statements and include these in your JES
initialization stream.

v Define a JCL procedure that will be used to start the FSS.

The following sections contain examples of the required initialization statements and
an example JCL procedure.

FSS-Related Initialization Statements
Both JES2 and JES3 have FSS-related initialization statements that you use to
define the FSS requirements and install the FSS.

JES2 FSS-Related Initialization Statements
JES2 has two FSS-related initialization statements. These are:

Statement Function
PRTnnnn Defines each FSS printer device to JES2.
FSSDEF Defines the characteristics of an FSS to JES2.

The following example shows how you might code the above statements to define
an FSS and an IBM 3820 printer device running under that FSS.
PRT1000 FSS=MYFSS,MODE=FSS,CKPTPAGE=100,PAGECKPT

FSSDEF FSSNAME=MYFSS,PROC=SAMPPROC,HASPFSSM=HASPFSSM

Refer to z/OS JES2 Initialization and Tuning Reference for more information about
each of these statements and the parameters defined on them.

© Copyright IBM Corp. 1988, 2001 11

JES3 FSS-Related Initialization Statements
JES3 has three FSS-related initialization statements. Which ones you use depends
on the type of printer that will run under the FSS. The three JES3 statements are:

Statement Function

DEVICE Defines each FSS printer device to JES3.

SETNAME Specifies all user-assigned names and device type names
associated with MDS-managed devices (for example, 3800
printers). MDS-managed devices are those devices which JES3
allocates, instead of MVS.

FSSDEF Defines the characteristics of an FSS to JES3.

Refer to z/OS JES3 Initialization and Tuning Reference for more information about
each of these statements. The following example shows possible initialization
statements for defining an FSS to control two IBM 3820 printer devices.
DEVICE,DTYPE=PRT3820,JNAME=P2G18,MODE=FSS,FSSNAME=MYFSS,JUNIT=(,SY1,D1,ON)
DEVICE,DTYPE=PRT3820,JNAME=P2X43,MODE=FSS,FSSNAME=MYFSS,JUNIT=(,SY1,D2,ON)

Defining JCL Procedure Used to Start an FSS
The following is an example of a JCL procedure used to define requirements for a
printing device running under an FSS.
//SAMPPROC PROC
//STEP01 EXEC PGM=MYFSS,REGION=1750K

Installing An FSS

12 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 4. The FSIREQ Macro

The FSIREQ macro enables communication to be established between JES and the
FSS/FSA. The following types of communication can be established by invoking the
FSIREQ macro.

v Connect the FSS/FSA to JES (CONNECT)

v Disconnect the FSS/FSA from JES (DISCONNECT)

v Get a SYSOUT data set from JES (GETDS)

v Get records for a SYSOUT data set (GETREC)

v Release records for a SYSOUT data set (FREEREC)

v Release a SYSOUT data set (RELDS)

v Write checkpoint information to spool (CHKPT)

v Send a response to JES (SEND)

v Notify the FSA that a request was completed (POST)

v Send an order to the FSS/FSA (ORDER)

The FSIREQ function dependent parameter lists are mapped by the IAZFSIP
mapping macro. The FSS/FSA and JES use the FSIREQ parameter lists to pass
information.

In addition to the information in the IAZFSIP macro, other information is passed in
additional parameter lists pointed to by the IAZFSIP. The appendix describes these
parameter lists and their relationship to the IAZFSIP macro.

This section describes the parameters on the FSIREQ macro and explains the rules
for executing the macro. The specific values that the FSS and JES assign are
discussed in the chapter specific to the task being performed.

FSIREQ Macro Format
The format of the FSIREQ macro is:

REQUEST =
Specifies the FSI service to be invoked by either JES or the FSS. If you do not

{FSICON}
{FSIDCON }
{FSIGDS }
{FSIRDS }

FSIREQ REQUEST = {FSIGREC }
{FSIFREC }
{FSICKPT }
{FSISEND }
{FSIORDER}
{FSIPOST }

{ ,TARGET = JES }
{ FSS }

{ ,PARM = parm list address }
{ (R1) }

{ ,FSID = functional subsystem identifier }
{ (R2 - R12) }

© Copyright IBM Corp. 1988, 2001 13

specify REQUEST, you must have previously stored one of the following values
in the FSIFUNC field of the FSI parameter list (IAZFSIP).

Note: You must specify the REQUEST= parameter for FSICON and FSIDCON
requests.

FSICON
The FSI CONNECT service communicates the initiated status of the
FSS/FSA to JES and identifies FSI routines supplied by the FSS/FSA.

FSIDCON
The FSI DISCONNECT service communicates the terminated status of the
FSS/FSA to JES.

FSIGDS
The FSI GETDS service enables the FSA to get a data set from JES.

FSIRDS
The FSI RELDS service enables the FSA to release a data set to JES.

FSIGREC
The FSI GETREC service enables the FSA to get records from an obtained
data set.

FSIFREC
The FSI FREEREC service enables the FSA to free records from an
obtained data set.

FSICKPT
The FSI CHKPT service allows the FSA to request JES to record
checkpoint information about a data set currently undergoing print
processing on an FSS device.

FSISEND
The FSI SEND service enables the FSS/FSA to send a response to JES.

FSIORDER
The FSI ORDER service enables JES to send an order to the FSS/FSA.

FSIPOST
The FSI POST service enables JES to notify the FSA that work is now
available and that the GETDS request can be reissued.

TARGET =
Specifies the subsystem whose routines are invoked when the FSIREQ macro
is executed. If target is not specified, JES is the default.

JES
Indicates that JES is to receive control. TARGET=JES is only used by the
FSS/FSA.

FSS
Indicates that the FSS is to receive control. TARGET=FSS is only used
when JES issues the FSIREQ macro for POST and ORDER requests.

PARM=
Specifies the address of the FSI parameter list. This list contains the data that
the specified service will use. If PARM is not specified, JES assumes that you
have put the address of the FSI parameter list in register 1. IBM recommends
that you save the address of the parameter list somewhere other than register
1. When JES returns control to the FSS the contents of register 1 may be
unpredictable.

FSIREQ Macro

14 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

The RMODE (residency mode) values that are allowed for the FSI parameter
lists depend upon the settings of the CDFFL331 and CDFS1A31 bits.

FSID=
Specifies a value that uniquely identifies the FSS/FSA. JES assigns the FSS an
identifier of the form xxxx0000, where xxxx is a unique number. JES assigns
the FSA an identifier of the form xxxxyyyy, where xxxx corresponds to the
controlling FSS identifier, and yyyy is a unique number for each the FSA. If
FSID is not specified, you must have previously stored the FSID in the FSIFSID
field of the FSI parameter list.

FSIREQ Macro Execution
The FSIREQ macro is used to request all of the FSI services. When JES or your
FSS/FSA issues the FSIREQ macro, the FSI services that receive control are
actually JES and FSS/FSA supplied routines. Each subsystem or subsystem
application identifies the addresses of its FSI routines during CONNECT
processing. The definition of each function’s input and output parameters is
supplied in the IAZFSIP mapping macro.

Note: The FSI routines adhere to standard OS linkage conventions.

The register conventions on entry to all the services are:

Register 1
Contains the address of the parameter list (FSIPARM).

Register 13
Contains the address of a save area provided by the issuer of the FSIREQ
macro.

Register 14
Contains the address of the return point.

Register 15
Contains the address of the entry point.

The FSIREQ macro services return the following return codes in register 15:

0 Successful

non-zero
Request failed

FSIREQ Macro

Chapter 4. The FSIREQ Macro 15

FSIREQ Macro

16 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 5. FSI Communication

The communication mechanism of the FSI allows JES to make service requests to
the FSS or FSA. The FSS or FSA receives the request, attempts to provide the
requested service, and then returns an indication to JES of whether or not the
request was successfully processed. In most cases, JES initiates the
communication. The case where the FSA initiates the communication (unsolicited
FSIREQ SEND function call) is discussed later in this section.

JES tells the FSS/FSA about the service that the FSS/FSA needs to provide
through the FSIREQ ORDER function call.

JES sends only one service request (order) at a time to the FSS or FSA for
processing. JES will not send another order to the FSS or FSA until it has received
a response from the FSS or FSA indicating the status of the previous order. The
response clears the order path and allows JES to issue other orders to the FSS or
FSA. If the FSS or FSA does not respond to a JES order, JES cannot communicate
with the FSS or FSA. The FSS/FSA responds to JES through the FSIREQ SEND or
FSIREQ CONNECT/DISCONNECT function calls.

JES uses the FSA POST service to let the FSA know that it has data sets that are
ready to be processed.

Order Processing - Communication from JES to the FSS/FSA
JES tells the FSS/FSA that there is work to be done by using the FSI ORDER
service. When an operator issues a JES command that requires the FSS/FSA to do
some work, JES converts that command into an order. That order represents work
that the FSS/FSA will do on behalf of JES.

The FSI Order Routine
The FSI order routine receives control when JES issues the FSIREQ ORDER
function call. There must be an FSI order routine associated with the FSS and each
FSA. JES knows about the FSI order routine because the FSS/FSA supplied the
address of the order routine during FSS or FSA Connect processing as part the
CONNECT parameter list. See “Preparing for FSS CONNECT” on page 32 for more
information about FSS Connect processing. See “Preparing for FSA CONNECT” on
page 42 for more information about FSA Connect processing.

Although part of the FSS or FSA, the FSI order routine runs under the control of a
JES TCB or SRB. While the order routine runs, JES is unable to provide any other
services and overall system performance may be impacted. Therefore, the order
routine should not do any lengthy processing.

FSI ORDER function calls are split into two categories; synchronous orders that
require minimal processing and can be responded to immediately, and
asynchronous orders that require substantial processing by the FSS or FSA and
therefore cannot be responded to immediately. The order routine of the FSS or FSA
responds directly to the order. IBM recommends that the order routine immediately
return control to JES with an indication that the order response will be returned
later. Later sections describe how to respond to the JES order.

Since orders occur asynchronously, the FSS or FSA main task will check at
appropriate points in its processing to see if an order has been issued.

© Copyright IBM Corp. 1988, 2001 17

Order Processing Parameter List
Before JES issues the FSIREQ macro to initiate FSI Order processing, JES fills in
the fields of the FSIREQ parameter list. The address of the FSIREQ parameter list
is in register 1. This section discusses those fields that are common to all order
processing. Fields that are specific to a particular order are discussed in the section
where the particular order is discussed (“Chapter 6. Establishing FSS/JES
Communication” on page 29 through “Chapter 13. Stopping an FSS” on page 111).

JES fills in the following fields of the common parameter header portion of the
FSIREQ parameter list:

FSILEN
The total length of the order parameter list. The order parameter list consists of
the common parameter header, the common order header and the section for
the specific order.

FSIFUNC
JES assigns the symbolic value FSIORDER to this field to indicate the type of
function that is required.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.
JES assigns the FSS an identifier of the form xxxx0000, where xxxx is a unique
number. JES assigns the FSA an identifier of the form xxxxyyyy, where xxxx
corresponds to the controlling FSS identifier, and yyyy is a unique number for
each FSA.

FSIPEXT
If this field is non-zero, then there is an existing extension to this parameter list.
The address of the extension is the contents of this field.

The only function that has an extension area is GETDS.

JES fills in the following fields of the common order header portion of the FSIREQ
parameter list:

ORDFDATA
A 4-byte field that is used by the FSS or FSA. This field can be the address of
a control block that contains information to allow the order routine to respond

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

SPECIFIC ORDER
SECTION

ORDER RESPONSE
AREA

(IAZRESPA)

FSILEN
FSIFUNC
FSIFSID

ORDFDATA
ORDRSPAD
ORDID
ORDFLGS1

Figure 6. Parameter List for Order Processing

FSI Communication

18 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

immediately to orders or notify (POST) the appropriate FSS or FSA task that an
order is waiting to be processed. The FSS/FSA passed this address to JES in
the CDFFDATA field of the CONNECT parameter list. JES returns this value in
the order parameter list.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The specific order ID number. Refer to “Chapter 6. Establishing FSS/JES
Communication” on page 29 through “Chapter 13. Stopping an FSS” on
page 111 to determine the order ID number for each specific order.

The FSA is responsible for filling in the following field of the common order header
portion of the FSIREQ parameter list:

ORDFLGS1
An indicator for whether the FSA is responding to the order synchronously or
asynchronously.

ORDSRESP
Synchronous response - The order response area is currently filled in. The
FSS or FSA needs to do no further processing.

ORDARESP
Asynchronous response - The order response area is not currently filled in.
The FSS or FSA needs to do further processing and will notify JES, by
using an FSIREQ SEND function call, that it has completed processing the
order.

Function of the FSI Order Routine
When the FSI order routine receives the order, it:

v Determines the type of order issued

v Either processes the order directly or posts the appropriate FSS/FSA task to
process the order asynchronously

v Saves the FSIPARM parameter list.

The order routine determines the type of order by testing the value of the ORDID
field in the common order header of the order parameter list. The address of the
order parameter list is in register 1.

The order routine also has the responsibility of determining whether to respond to
the order synchronously or asynchronously.

Synchronous Processing: If the FSS/FSA can immediately respond to the order,
it must:

1. Initialize the appropriate field(s) of the order response area. The ORDRSPAD
field of the order parameter list contains the address of the order response area
(mapped by IAZRESPA).

2. Set ORDFLG1 equal to ORDSRESP to inform JES that the required information
is in the order response area. (ORDFLG1 is a field in the common order header
of the IAZFSIP mapping macro.)

3. Return control to JES.

Notes:

1. If, for some reason, the FSS/FSA cannot handle a specific order, the FSS/FSA
should set register 15 equal to a non-zero return code and return control to
JES. This will cause JES to terminate the FSS address space.

FSI Communication

Chapter 5. FSI Communication 19

2. If, for some reason, the FSS/FSA decides to ignore a specific order, the
FSS/FSA should respond to the order synchronously by using the previous
procedure. In this case, however, no processing will be done by the FSS or FSA
before control is returned to JES. JES will think that the order has been
processed and processing will continue.

Asynchronous Processing: If the FSS/FSA cannot immediately respond to the
order, it must:

1. Set ORDFLG1 equal to ORDARESP to inform JES that the FSA will respond to
the order at a later time by means of a FSI SEND request. (ORDFLG1 is a field
in the common order header of the IAZFSIP mapping macro.)

2. The order routine should save the address of the FSIREQ parameter list into
storage the FSS/FSA has access to. The ORDFDATA field can be used to
accomplish this.

3. Let the FSS/FSA main line code know that an order has been received. The
FSS/FSA main line code initializes the appropriate field(s) of the order response
area after the request from JES has been fulfilled. The ORDRSPAD field of the
order parameter list contains the address of the order response area (mapped
by IAZRESPA). Register 1 contains the address of the order parameter list. The
FSS or FSA responds to the order by using the FSI SEND request.

4. Return control to JES.

Coding Considerations
When coding the FSI order routine you must consider that:

v The FSI order routine must reside below the 16-megabyte line.

v No SVCs can be issued from an FSI Order routine.

Responding to an Order - Communication from the FSS/FSA to JES
The FSS/FSA tells JES that it has completed a piece of work by using the FSIREQ
SEND or FSIREQ CONNECT/DISCONNECT function calls. These function calls are
used only for asynchronous responses. “Synchronous Processing” on page 19
discusses immediate (synchronous) responses to an order from JES.

When the FSS/FSA uses the FSIREQ SEND function call to respond to an order
from JES, it is referred to as a solicited SEND request. Most instances of the FSI
SEND service are for solicited SEND requests. When the FSS/FSA uses the FSI
SEND service for a reason other than a response to a JES order, it is referred to as
an unsolicited SEND request.

Send Processing in Response to an Order
Before the FSS or FSA issues the FSIREQ macro to initiate FSI SEND processing,
the FSS or FSA fills in the fields of the FSIREQ parameter list.

FSI Communication

20 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

The FSS/FSA needs to initialize the following parameters in the common parameter
header section before it issues the FSIREQ SEND function call:

Field Name Value (bytes) Value to be Assigned

Common Parameter header

FSILEN 4 Length of SEND parameter list

FSIFUNC 4 FSISEND

FSIFSID 4 The FSS/FSA identifier.

SEND Function Dependent Area

SNDTYPE 1 SNDTYRSP

SNDRSPTR 4 Address of the order response area for
unsolicited send requests

FSILEN
The length of the entire SEND parameter list. The SEND parameter list consists
of both the IAZFSIP common header section and the SEND function dependent
section.

FSIFUNC
The SEND function ID number. The FSS/FSA assigns the symbolic value
FSISEND to this field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.

FSIFSSID
This field contains the FSS portion of the FSS/FSA identifier.

FSSFSAID
This field contains the FSA portion of the FSS/FSA identifier.

PARM HEADER
(IAZFSIP)

SEND HEADER
(SNDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

RESPID
RESPLEN
RESPFL1
RESPFL2
RESPRETC
RESPCPYC
RESPPGEC
RESPPREC
RESPOOPI

FSILEN
FSIFUNC
FSIFSID

SNDTYPE
SNDRSPTR

Figure 7. Parameter List for Send Processing

FSI Communication

Chapter 5. FSI Communication 21

The FSS/FSA needs to initialize the following parameters in the SEND function
dependent section before it issues the FSI SEND request:

SNDTYPE
The SNDTYPE ID number. The FSS/FSA sets this field equal to SNDTYRSP.
SNDTYRSP indicates that the SEND request is in response to an order.

SNDRSPTR
The address of the order response area. For a solicited SEND request, JES
supplies this address in the ORDRSPAD field. For an unsolicited SEND
request, the FSA supplies the address.

Initializing the Order Response Area
After the FSS or FSA does some processing to fulfill the JES order, the FSS or FSA
initializes the order response area (IAZRESPA).

The following table lists the IAZRESPA fields, the lengths of these fields, and the
information the FSA may provide in each field. Detailed descriptions of the value
assignments follow the table.

Field Name Length
(bytes)

Value to be assigned

IAZRESPA Order Response Area

RESPID 4 “RESP”

RESPLEN 4 Length of the response area

RESPFL1 1 Device status

RESPFL2 1 Order processing status

RESPRETC 4 Return code of requested function

RESPCPYC 2 Copy number of data set at OOP

RESPPGEC 4 Page number of data set at OOP

RESPLREC 4 Logical record number of data set at OOP

RESPOOPI 12 Identifier of data set at OOP

The FSS/FSA needs to initialize the following parameters in the Order Response
Area before it issues the FSI SEND request:

RESPID
“RESP” - The identifier of the response area

RESPLEN
The length of the response area

RESPFL1
If the device is not active, the FSA initializes this flag byte with one of the
following indicators:

RESP1DIN
The device is inactive

RESP1DSP
The device is stopped

RESPFL2
The FSA uses this flag byte to notify JES of order processing status. The FSA
can set one of the following indicators:

FSI Communication

22 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

RESP2EOD
The end of data (EOD) was reached on a forward synch action.

RESP2NDS
No data set was active at the OOP (operator observation point).

RESP2ETE
Environmental-type error. An environmental-type error is one that can be
fixed without bringing the FSA down. For example, the printer might simply
need more toner. The FSS uses RESP2ETE to tell JES not to bring the
FSA down for this minor problem.

RESPRETC
The return code for the requested function. If the FSS or FSA completed the
order successfully, this field is set to zero. If the FSS or FSA could not complete
the order, it sets this field to a value greater than zero.

RESPCPYC
The copy number of the data set at the OOP.

RESPPGEC
The page number of the data set at the OOP.

RESPLREC
The approximate logical record number of the data set at the OOP.

RESPOOPI
The identifier of the data set at the OOP.

Specific responses to individual orders will vary in the amount of the above
information that needs to be included in the order response area. Refer to
“Chapter 7. Establishing FSA/JES Communication” on page 37 through “Chapter 13.
Stopping an FSS” on page 111, for that specific information.

Issuing the FSIREQ SEND Request
When the FSA completes the initialization of the response area and SEND
parameter list, it issues the FSIREQ macro to invoke the FSI SEND communication
service. The format of this macro call is:
FSIREQ REQUEST=FSISEND,TARGET=JES,PARM=SEND
parm-list-addr,FSID=value-addr

Note: See “FSIREQ Macro Format” on page 13 for a complete description of this
macro.

On return from SEND processing, register 15 contains either a zero return code
indicating success or a non-zero return code indicating an error occurred.

Unsolicited Send Processing
The FSA can initiate communication with JES through unsolicited SEND requests.
The FSA processes an unsolicited SEND the same way it processes a solicited
SEND (a send in response to an order). The same parameter list is used, the
parameter list is filled in the same, and it is passed to JES by using the FSIREQ
SEND function call.

The only difference is that for an unsolicited SEND request, the FSA must provide
the order response area. The FSIREQ SEND parameter list the address of this
order response area. JES will not provide the order response area for unsolicited
SEND requests.

FSI Communication

Chapter 5. FSI Communication 23

There are four occasions when the FSS/FSA can use the FSI SEND service to
initiate an unsolicited SEND request. The first is when a data set has reached the
operator observation point (OOP) of a device. The second occasion is when the
FSA needs to notify JES that it is terminating. The third occasion is when
intervention is required, and the fourth occasion is when intervention is cleared.

Initializing the FSIREQ Parameter List
The FSA must fill in the following parameters in the common parameter section
before it issues the FSI SEND request:

FSILEN
The length of the entire SEND parameter list. The SEND parameter list consists
of both the IAZFSIP common header section and the SEND function dependent
section.

FSIFUNC
The SEND function ID number. The FSA assigns the symbolic equate value
FSISEND to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

The FSA must fill in the following parameters in the SEND parameter section before
it issues the FSI SEND request:

SNDTYPE
The FSA uses this flag byte to indicate to JES the type of information being
sent. For this issuance of the SEND request, the FSA is expected to set the
following indicator:

SNDTYTDS or SNDTYFIT
The FSA is satisfying JES’s request for notification (GDSTRKDS) when the
data set reaches the OOP or the FSA is terminating. Refer to “Chapter 9.
Issuing Data Requests to JES” on page 51 and “Chapter 12. Stopping an
FSA” on page 105 for more information.

SNDTYINT
The FSA is satisfying JES’s request for intervention.

SNDTYICL
The FSA is satisfying JES’s request to clear intervention.

SNDRSPTR
The address of the FSA-provided response area.

CONNECT/DISCONNECT Processing in Response to an Order
During FSS and FSA initialization and termination the CONNECT/DISCONNECT
FSIREQ function call is used to indicate to JES that processing of a START FSS or
START FSS order is complete. The FSS or FSA CONNECT request is issued as a
response to a START FSS request or START FSA order from JES. The FSS or
FSA DISCONNECT request is issued as a response to a STOP FSA or STOP FSS
order from JES.

Post Processing
The FSI post routine receives control when JES issues the FSIREQ POST function
call. There must be an FSI post routine associated with each FSS and FSA. The
FSS/FSA supplies the address of the post routine during FSS or FSA Connect
processing as part of the CONNECT parameter list. See “Preparing for FSS

FSI Communication

24 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

CONNECT” on page 32 for more information about FSS Connect processing. See
“Preparing for FSA CONNECT” on page 42 for more information about FSA
Connect processing.

The FSI Post Routine
Although part of the FSS/FSA, the FSI post routine code runs under the control of a
JES TCB or SRB. While the post routine is running, JES is unable to provide any
other services and overall system performance may be impacted. Therefore, the
post routine should not do any lengthy processing.

Function of the FSI Post Routine
The only use of the FSIREQ POST function call is for JES to notify the FSA that
there are data sets available for processing.

The FSA POST routine uses information passed in the POST parameter list to
indicate to the appropriate FSA that GETDS requests are now allowed. The
POSFDATA field points to this information This field is filled in from the CDFFDATA
field during connect processing.

If the POST processing is successful, the FSA POST routine returns control to JES
with a zero return code in register 15. If an error occurs during processing, the FSA
POST routine returns control to JES with a non-zero return code in register 15. JES
abnormally terminates the FSS address space if JES receives a non-zero return
code.

Post Processing Parameter List
Before JES issues the FSIREQ macro to initiate FSI POST processing, JES fills in
the fields of the FSIREQ parameter list.

In the common parameter header section of the POST parameter list, JES passes
the following information:

FSILEN
The length of the POST parameter list, which consists of the common header
section and the POST function dependent section.

FSIFUNC
The POST function ID number. The symbolic equate FSIPOST represents this
value.

FSIFSID
The FSS/FSA IDs that JES assigned to the FSS/FSA during startup.

In the function dependent section of the POST parameter list, JES passes the
following information:

PARM HEADER
(IAZFSIP)

POST HEADER
(POSTPARM)

FSILEN
FSIFUNC
FSIFSID

POSTFLS1
POSTFDATA

Figure 8. Parameter List for Post Processing

FSI Communication

Chapter 5. FSI Communication 25

POSTFLS1
This status flag byte indicates the reason for the POST request. The following
indicator is set:

POSTGDS B‘10000000’
GETDS requests can now be satisfied.

POSFDATA
A 4-byte field that is used by the FSS or FSA. This field can be the address of
a control block that contains information that allows the post routine to notify the
appropriate FSA task that a GETDS can be issued.

Types of Orders
There are ten types of orders or work that the FSS/FSA does when JES invokes
the FSI ORDER service. The following table describes:

v The function you want to perform (Function)

v The order needed to perform that function (Order)

v The expected response to that order (Response)

v The response method required (Response Method)

v A reference to where detailed information about that order can be found
(Reference)

Table 2. Orders and Responses

Function Order Response Response
Method

Reference

Start an FSS MVS START
command

Connect Asynchronous “Chapter 6. Establishing
FSS/JES
Communication” on
page 29

Start an FSA Start FSA Connect Asynchronous “Chapter 7. Establishing
FSA/JES
Communication” on
page 37

Start device Send Asynchronous “Chapter 8.
Starting an FSS
Device” on
page 47

Stop a device Stop device Send Asynchronous “Chapter 11. Stopping
an FSS Device” on
page 101

Stop an FSA Stop FSA Disconnect Asynchronous “Chapter 12. Stopping
an FSA” on page 105

Stop an FSS Stop FSS Disconnect Asynchronous “Chapter 13. Stopping
an FSS” on page 111

Obtain information about the
current data set

Query Send Synchronous “The Query Order” on
page 87

Change device characteristics Set Send Asynchronous “The Set Order” on
page 89

After the current data set Synch Send Asynchronous “The Synch Order” on
page 91

Change the set up of the
device

Intervention Send Asynchronous “The Intervention Order”
on page 97

FSI Communication

26 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Addressing Mode - AMODE
AMODE is a program attribute that can be specified (or defaulted) for each CSECT,
load module, and load module alias. AMODE states the addressing mode that is
expected to be in effect when the program is entered. AMODE can have one of the
following values:

AMODE 24 The program is designed to receive control in 24-bit addressing
mode.

AMODE 31 The program is designed to receive control in 31-bit addressing
mode.

AMODE ANY The program is designed to receive control in either 24-bit or 31-bit
addressing mode.

You should be concerned about allowable values for the following:

v AMODE in which your FSS/FSA code runs. This AMODE value is set by the
CDFFL331 bit in the CONNECT parameter list.

v AMODE in which JES enters FSS/FSA code. This AMODE value is set by the
CDFS1A31 bit in the CONNECT parameter list.

Initially the FSS sets the CDFFL331 bit of the CONNECT parameter list to indicate
whether or not it supports AMODE(31). If the FSS supports AMODE(31), JES sends
all FSI parameter lists above the line.

JES sets the CDFS1A31 bit of the CONNECT parameter list to indicate whether or
not it supports AMODE(31). If JES supports AMODE31 the FSS/FSA can, but does
not necessarily have to, pass FSI parameter lists above the line.

The following matrix presents the allowable AMODE values under various
conditions.

Conditions AMODE

for FSS/FSA code in which JES enters
FSS/FSA code

FSS supports AMODE(31)
JES supports AMODE(31)

31 31

FSS does not support AMODE(31) 24 24

JES does not support AMODE(31) ANY 24

Pointer-defined Linkage
Pointer-defined linkage sets the appropriate addressing mode when control is
passed from one routine to another. See z/OS MVS Programming: Assembler
Services Guide.

Residency Mode - RMODE
RMODE states the virtual storage location (either above 16 megabytes or anywhere
in virtual storage) where the program should reside. RMODE can have the following
values:

RMODE 24 The program is designed to reside below 16 megabytes in virtual
storage. MVS places the program below 16 megabytes.

FSI Communication

Chapter 5. FSI Communication 27

RMODE ANY The program is designed to reside at any virtual storage location,
either above or below 16 megabytes. MVS places the program
above 16 megabytes unless there is no suitable storage above 16
megabytes.

The following matrix presents the allowable RMODE values for the FSI parameter
lists under various conditions.

Conditions Residency Location of Parameter List

for FSS CONNECT
PSIPARM

for all other FSIPARMs

FSS supports AMODE(31)
JES supports AMODE(31)

31
31

31
31

FSI Communication

28 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 6. Establishing FSS/JES Communication

JES starts the functional subsystem (FSS) address space either during JES
initialization or in response to an operator command to start a printer under control
of the FSS. When the FSS receives control, it performs initialization and then
responds to JES.

If the FSS successfully starts, it issues an FSI CONNECT request to JES to
establish the FSS-level functional subsystem interface (FSI). FSS CONNECT
processing:

v Notifies JES that the FSS is started.

v Identifies to the FSI the addresses of FSS routines that are to receive control
when JES issues the FSIREQ macro.

v Identifies to the FSI the addresses of JES routines that are to receive control
when the FSS issues the FSIREQ macro.

Completion of FSS level CONNECT processing signals JES to issue a START FSA
order to the FSS.

The following topics describe:
v How JES starts the FSS
v Initialization required by the FSS
v How the FSS connects to JES.

Starting an FSS
When JES determines that an FSS should be started, it creates an MVS START
command using information from the corresponding FSSDEF initialization
statement. The START command creates and initializes the FSS address space.
Figure 10 shows the format of the MVS START command and the relationship
between the FSSDEF parameters and the MVS START command parameters.

JES CODE FSS/FSA CODE

Address space created
FSS Initialization
FSS Connect Request
FSIREQ REQUEST=FSICON

Receive response of started device

START procname...

Issue Start FSA
FSIREQ REQUEST=FSIORDER

Issue start device
FSIREQ REQUEST=FSIORDER

Initialize PRINTER
FSIREQ REQUEST=FSISEND

WAIT

FSS waits for orders

FSA waits for orders

WAIT

WAIT

FSA Initialization
FSA Connect Request
FSIREQ REQUEST=FSICON

1

2

3

4

6

5

Figure 9. An Overview of FSI Startup Processing

© Copyright IBM Corp. 1988, 2001 29

procname
The name of a procedure in SYS1.PROCLIB or one of its concatenations that
contains the JCL required to start the FSS address space.

procid
The identifier that will be assigned to the started task (the FSS) created by the
issuance of the MVS START command.

ssname
The subsystem name of the JES that issued the MVS START command.

fsid
The FSS part of the FSID for all FSAs running under this FSS (the FSS id).
This field contains the EBCDIC representation of the high-order halfword of the
FSID that is assigned by JES during JES initialization. JES assigns the FSS an
identifier of the form xxxx0000, where xxxx is a unique number. JES assigns
the FSA an identifier of the form xxxxyyyy, where xxxx corresponds to the
controlling FSS identifier, and yyyy is a unique number for each the FSA.

Initializing the FSS Address Space
The FSS receives control from JES in the normal MVS task control block (TCB)
environment created for a started task. The FSS performs initialization and then
establishes the FSS-level interface to JES. General initialization procedures and
recommendations are described below.

The FSS must place itself into supervisor state, key 1, to use the FSI services. The
FSS uses the MODESET macro to perform this task. The format of the MODESET
macro calls are:
MODESET MODE=SUP (places the FSS in supervisor state)

MODESET EXTKEY=JES (places the FSS in key 1)

The FSS must also be running non-swappable. The FSS uses the SYSEVENT
macro to perform this task. The format of the SYSEVENT macro call is:
SYSEVENT DONTSWAP (causes the FSS to run non-swappable)

JES2: 3.1.1 and above

FSSDEF(acccccccPROC=cccccccc

STARTprocname.procid...(ssname,fsid)

JES3:

FSSDEFPNAME=accccccc,FSSNAME=accccccc

STARTprocname.procid,,,(ssname,fsid)

Figure 10. FSSDEF/MVS Start Command Parameter Relationships

Establishing FSS/JES Communication

30 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Note: An FSS can enter supervisor state only if it is running with APF
authorization.

The name of your FSS program must be added to the program properties table
(PPT) with the KEY parameter set equal to one. Refer to z/OS MVS Initialization
and Tuning Reference for information about the SCHEDxx parmlib member.

It is recommended that the FSS establish an ESTAE routine so that it can handle
its own recovery processing.

You should use the appropriate AMODE and RMODE values for defining the FSS
load module. See 26 for information about the factors that govern AMODE and
RMODE settings.

Retrieving the MVS START Command and Token
The FSS needs to retrieve the information passed in the MVS START command
during FSS startup so that it can perform verification and initialize the CONNECT
parameter list. The FSS uses the EXTRACT macro to retrieve information. The FSS
must provide an area to receive the EXTRACT information and it must supply the
address of this ‘answer-area’ on the EXTRACT macro call.

The format of the EXTRACT macro call is:
EXTRACT answer-area-address, 'S',FIELDS=(COMM)

On return from the EXTRACT macro request, the ‘answer-area’ has the address of
the communications area (mapped by IEZCOM). This communications area
consists of:
v the communications event control block
v the command input buffer (CIB) for the MVS START command

The FSS should verify that a token was provided during startup to insure it was not
started by an operator-issued MVS START command. If a token was specified, as
in the case of a JES-issued START command, the high-order bit of the token field
will be set to one. If a token was not provided, the FSS needs to decide whether or
not it should terminate.

If it continues in this environment, it cannot run as an FSS in the JES environment.

The CIB contains the MVS START command parameters. The FSS must verify that
the MVS START command parameters were specified by insuring that the
CIBDATLN field of the CIB is greater than zero. If the START command parameters
were not specified, the FSS must terminate.

The FSS needs to retrieve the FSS id (fsid) and JES subsystem name (ssname)
from the CIB and save this information for subsequent FSI processing. The fsid is
an identifier of the form xxxx0000, where xxxx is a unique number assigned by
JES. The FSS must not release the MVS START command CIB until after issuing
the FSIREQ CONNECT request. The FSS must supply the FSS id in all FSIREQ
requests. It must supply the JES subsystem name in CONNECT/DISCONNECT
FSIREQ requests.

Establishing FSS/JES Communication

Chapter 6. Establishing FSS/JES Communication 31

Preparing for FSS CONNECT
If the FSS successfully starts, it can establish the FSS-level interface to JES.
Preparation for the FSIREQ CONNECT request consists of three steps. The FSS
needs to:

1. GETMAIN enough storage for the IAZFSIP mapping macro and the SSOB/SSIB
pair. The storage for the SSOB/SSIB pair must be contiguous.

2. Provide an 18-word save area.

3. Initialize the CONNECT parameter list.

If the FSS discovers a problem during initialization and is unable to connect, the
FSS should go through normal MVS termination. MVS services notify JES of this
termination.

Initializing the FSS Level FSIREQ CONNECT Parameter List
The FSS needs to initialize certain fields of the FSIREQ CONNECT parameter list.
The following figure shows the connection between the different sections of the
FSIREQ parameter list.

The following table lists the required fields, the lengths of these fields, and the
values that the FSS must assign. Detailed descriptions of the value assignments
follow this table.

Field Name Length
(bytes)

Value to be assigned

Common Parameter Header Section (IAZFSIP)

FSILEN 4 Length of CONNECT parameter list

FSIFUNC 4 FSICON

FSIFSID 4 The FSS ID

CONNECT Function Dependent Section (CDFPARM)

CDFFLGR2 1 Functions that involve operator intervention

CDFFLGR3 1 Specifies JES functions supported by the
FSA

CDFSTOR 4 Address of storage for SSOB/SSIB pair

CDFFDATA 4 Address of a control block containing FSS
information

PARM HEADER
(IAZFSIP)

CON/DCON PARM
(CDFPARM)

CDFPAIRS

Figure 11. FSIREQ Parameter Lists for FSS CONNECT Processing

Establishing FSS/JES Communication

32 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Field Name Length
(bytes)

Value to be assigned

CDFIDNO 4 2

CDFIDNA 4 Address of FSS function ID/address pairs

CDFSSID 4 Name of the JES to which the FSS is
connecting

CDFFLGS1 1 Functions supported by JES

Function ID/Address Pairs (CDFPAIRS)

CDFID 4 FSIORDER

CDFAD 4 Address of the FSI ORDER routine

CDFID 4 FSIPOST

CDFAD 4 Address of the FSI POST routine

FSILEN
The length of the entire CONNECT parameter list. The CONNECT parameter
list consists of both the IAZFSIP common header section and the CONNECT
function dependent section. The length does not include the CDFPAIRS section.

FSIFUNC
The CONNECT function ID number. The FSS must issue the FSIREQ macro
with REQUEST=FSICON specified.

FSIFSID
The FSS ID that JES assigned when it started the FSS. The FSS obtains the
FSID from the command input buffer (CIB).

CDFFLGR2
Indicates functions that require intervention. When any of these bits are on, JES
issues the setup required message, when the device is started. When all bits
are off, JES suppresses the setup required message.

CDFFL2BT B’10000000’
FSS might use the burster-trimmer-stacker.

CDFFL2FL B’01000000’
FSS might use a flash.

CDFFL2FO B’00100000’
FSS might need a forms change.

CDFFL2CF B’00010000’
FSS might use continuous paper.

CDFFLGR3
Indicates the functions supported by this FSS. These indicators may be set:

CDFFL3MS B’10000000’
Extended message routing is supported.

CDFFL331 B’01000000’
AMODE(31) is supported.

CDFFL34D B’00100000’
Support for 4-digit device numbers.

Establishing FSS/JES Communication

Chapter 6. Establishing FSS/JES Communication 33

CDFSTOR
The address of the storage that the FSS GETMAINed for the contiguous
SSOB/SSIB pair. The length of the SSOB/SSIB pair can be obtained by the
IEFJSSOB and IEFJSSIB macros.

CDFFDATA
A 4-byte field that is used by the FSS. This field can be the address of a control
block that may contain FSS information needed by the FSI ORDER and FSI
POST routines. JES will return this field when JES invokes the FSI POST and
FSI ORDER routines. For FSI ORDER processing, JES returns the address in
the ORDFDATA field. For FSI POST processing, JES returns the address in the
POSFDATA field. One of the things this control block may contain is an ECB
that the ORDER or POST routines can post.

CDFIDNO
The number of function ID/address pairs pointed to by CDFIDNA.

CDFIDNA
The address of the first function ID/address pair. The function pairs should be
defined in the format mapped by CDFID and CDFAD in the IAZFSIP mapping
macro. The CDFID and CDFAD format are repeated for each function the FSS
or FSA provides. The FSS should provide a CDFID and CDFAD pair for an FSS
ORDER routine and an FSS POST routine.

CDFSSID
The name of the JES to which the FSS is issuing the CONNECT request. If the
FSS does not specify this parameter, it will be connected to the primary JES
defined to your installation. The FSS obtains the name of the JES from the CIB.
In the JES2 environment, it is crucial that the FSS supply the CDFSSID since
JES2 supports poly-JES (Many versions of JES2 can run under the same
MVS.)

CDFFLGS1
Indicates functions supported by JES. The JES fills in this value which is used
by the FSS on return from the CONNECT FSIREQ.

CDFS1INT B’10000000’
Unsolicited send for intervention conditions.

CDFS1ETE B’01000000’
Support for environmental-type errors. (Environmental-type errors are minor
errors that do not require the FSS or FSA to be brought down.)

CDFS1A31 B’00100000’
Support for AMODE(31).

CDFS1ESS B’00010000’
Support for ESS keywords.

CDFS1DNR B’00001000’
Supports device not responding conditions.

CDFID
The FSI ORDER function ID. The FSS may assign the symbolic equate
FSIORDER to this field.

CDFAD
The entry point address of the FSS’s FSI ORDER routine.

Establishing FSS/JES Communication

34 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Issuing the FSS Level FSIREQ CONNECT Request
When the FSS has completed initializing the CONNECT parameter list, it issues the
FSIREQ macro to invoke the FSI CONNECT service. communications list. The
format of this macro call is:
FSIREQ REQUEST=FSICON,TARGET=JES,PARM=CONNECT
parm-list-addr,FSID=value-addr

See “Chapter 4. The FSIREQ Macro” on page 13 for a complete description of each
operand on this macro and the defaults that may be taken.

FSS CONNECT Processing
The FSIREQ CONNECT request results in a call to the SSI CONNECT routine of
the subsystem specified in the CDFSSID field of the CONNECT parameter list. The
CONNECT parameter list is used as the SSOB extension for the SSI call. The SSI
CONNECT routine loads the JES functional subsystem support modules into the
FSS address space and then passes control to the FSI CONNECT routine in that
module.

Diagnosis, Modification or Tuning Information

The FSI CONNECT routine allocates storage for and initializes the various
FSI-related control blocks, for example, the functional subsystem vector table
(FSVT) and the functional subsystem control tables (FSCTs). JES builds two FSCTs
for the FSS. JES initializes one FSCT with the address of the FSS’ FSI ORDER
routine which was passed in the CDFAD field of the CONNECT parameter list. JES
initializes the second FSCT with the addresses of FSS level FSI services provided
by JES. On subsequent FSIREQ requests, the FSIREQ macro searches the
appropriate FSCT to obtain the address of the FSI routine it needs to branch to.
The JES also sets the flag CDFFLGS1 to indicate those special functions supported
by the JES. These functions include: Unsolicited Sends for Intervention and ETE
Type Errors.

End of Diagnosis, Modification or Tuning Information

If the FSS is connecting to JES2, the FSI CONNECT routine also establishes the
cross memory environment between the FSS address space and the JES2 address
space.

At completion of FSS CONNECT processing, register 15 contains the SSI
CONNECT function dependent return code. A zero return code indicates the FSS
level interface to JES is established.

How JES Handles Logic Errors and Abends
If an error occurs during FSS CONNECT processing, JES sets a non-zero return
code in the SSOBRETN field of the SSOB. An invalid FSID is an example of a
possible error. JES then performs the same processing as if the FSS issued a
DISCONNECT request requesting abnormal termination. See “Chapter 13. Stopping
an FSS” on page 111 for more information about DISCONNECT processing.

Establishing FSS/JES Communication

Chapter 6. Establishing FSS/JES Communication 35

How JES Monitors Timing of FSS CONNECT
When JES issues the MVS START command to the FSS, it starts a timer. If the
FSS does not respond with an FSS CONNECT request in the specified time
interval, JES simulates receiving an FSS level DISCONNECT response. See
“Chapter 13. Stopping an FSS” on page 111 for more information about
DISCONNECT processing.

JES2 issues message, HASP706 every five minutes, indicating that it is still waiting
for the START command to complete, it continues to reset the timer and wait.

JES3 issues messages, IAT6373 and IAT6374, indicating that it is still waiting for
the START command to complete, it continues to reset the timer and wait.

Establishing FSS/JES Communication

36 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 7. Establishing FSA/JES Communication

When the JES operator issues the command to start an FSS printer device, JES
determines if the FSS for which the printer is defined is currently active. If that FSS
is not currently active, JES starts the FSS. Immediately after JES receives a
response for the START FSS order from the FSS, JES issues a START FSA order
for each FSA defined to that FSS. Refer to “Chapter 6. Establishing FSS/JES
Communication” on page 29 for more information about starting an FSS. If the FSS
is currently active, JES converts the command into a START FSA order to start the
printer device.

If the printer is successfully allocated and initialization is complete, the FSA issues
an FSIREQ CONNECT request to JES to establish the FSA-level functional
subsystem interface (FSI). FSA CONNECT processing:

v Notifies JES that the FSA has successfully started.

v Identifies to the FSI the addresses of FSA routines that are to receive control
when JES issues the FSIREQ macro.

v Identifies to the FSI the addresses of JES routines that are to receive control
when the FSA issues the FSIREQ macro.

Completion of FSA level CONNECT processing signals JES to issue a START
device order.

If the FSA could not be successfully started, either the FSS or the FSA (depending
on when in time the failure was detected) issues a SEND request to JES indicating
that the START FSA order was unsuccessful. See “FSA Could Not Be Started” on
page 45 for more information about unsuccessful starts.

JES CODE FSS/FSA CODE

Address space created
FSS Initialization
FSS Connect Request
FSIREQ REQUEST=FSICON

Receive response of started device

START procname...

Issue Start FSA
FSIREQ REQUEST=FSIORDER

Issue start device
FSIREQ REQUEST=FSIORDER

Initialize PRINTER
FSIREQ REQUEST=FSISEND

WAIT

FSS waits for orders

FSA waits for orders

WAIT

WAIT

FSA Initialization
FSA Connect Request
FSIREQ REQUEST=FSICON

1

2

3

4

6

5

Figure 12. An Overview of FSI Startup Processing

© Copyright IBM Corp. 1988, 2001 37

Processing the START FSA Order
To start an FSA, JES issues the START FSA order to the FSS’s FSI ORDER
routine. During FSS CONNECT processing, the FSS places the address of the FSI
ORDER routine into the CDFAD field of the CONNECT parameter list for use by
JES. JES passes the address of the START FSA order parameter list in register 1.
The parameter list contains the address of the order response area (IAZRESPA).

Refer to “Chapter 5. FSI Communication” on page 17 for general information about
the responsibilities of the FSS’s Order routine.

The START FSA order causes the FSS to attach an FSA task that will attempt to
allocate and initialize a specific printer device. JES will not issue another order to
the FSS until it receives a response to the START FSA order.

The START FSA order parameter list consists of the following sections:
v Common parameter header
v Common order header
v START order function dependent section
v Device initialization area
v Message routing information area (JES3 only)

The following figure shows the connection between the different sections of the
FSIREQ parameter list.

The following table shows the parameters that JES initializes for the START FSA
order. The values that JES assigns are explained after the table.

Field Name Length
(bytes)

Value JES Assigned

Common Parameter Header (IAZFSIP)

FSILEN 4 Length of START order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS identifier

Common Order Header (ORDPARM)

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

START/STOP
(ORDSS)

ORDER RESPONSE
AREA

(IAZRESPA)

DEVICE
INITIALIZATION
PARAMETERS

Figure 13. FSIREQ Parameter Lists for the START FSA Order

Establishing FSA/JES Communication

38 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Field Name Length
(bytes)

Value JES Assigned

ORDFDATA 4 Information supplied to JES in the FSS/FSA
CONNECT parameter list (CDFFDATA)

ORDRSPAD 4 Address of the order response area

ORDID 2 ORDSTFSA

START Order Function Dependent Section (ORDSS)

ORDSSSP 4 Address of device initialization area
(ORDSSP1)

ORDSSID 4 FSS/FSA identifier of device to start

ORDSSAD4 4 Device address in 4-digit format

ORDSSAD 3 Device address in 3-digit format

ORDSSNA 8 Device name

ORDSSSP2 4 Address of message routing information

Device Initialization Area

ORDSSPF1 1 Spacing flag byte

ORDSSPF2 1 Checkpoint flag byte

ORDSSPF3 1 NPRO timer flag byte

ORDSSKI 4 Initial checkpoint interval

ORDSSNI 4 Initial NPRO timer interval

Message routing information area

ORDSS2LN 2 Length of the message routing information
area

ORDSS2FL 1 Message routing flag

ORDSS2RC 16 MCS routing code mask

ORDSS2CN 4 Console ID in WTO format

FSILEN
The total length of the START order parameter list. The START order parameter
list consists of the common parameter header, the common order header and
the START order function dependent section.

Note: The device initialization area and the message routing information are
not part of the total length. Field ORDSSSP contains the address of the
device initialization area. Field ORDSSSP2 contains the address of the
message routing area.

FSIFUNC
The ORDER ID number. JES assigns the value FSIORDER to this field.

FSIFSID
The FSS/FSA identifier.

FSIFSSID
The FSS identifier that JES assigned when it started the FSS.

FSIFSAID
This field is initialized to zero. The FSA sets this field to the FSA identifier
when it issues the FSA-level CONNECT request. At this point in processing,
the FSA identifier is contained in the ORDSSAI field of the START FSA
order dependent section of the START FSA order parameter list.

Establishing FSA/JES Communication

Chapter 7. Establishing FSA/JES Communication 39

ORDFDATA
The address of a control block containing FSS-related information. The FSS
passed this address to JES in the CDFFDATA field of the CONNECT parameter
list. JES returns this value in the START FSA order parameter list so that the
FSS’s FSI order routine can post the appropriate FSS task to process the order.
This control block may contain the FSS or FSA ECB to be posted for
processing. It may also be used to save the order parameter list for processing
by the FSS/FSA or the QUERY order information for an immediate response.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The START FSA order ID number. JES assigns the value ORDSTFSA to this
field. The order routine uses this value to determine what the order is and
whether it should be responded to synchronously or asynchronously.

ORDSSSP
The address of the device initialization area. The device initialization area
contains setup characteristics for the device.

ORDSSID
The FSS/FSA identifier of the device to start.

ORDSSSI
The FSS section of the identifier.

ORDSSAI
The FSA section of the identifier. Use this value to initialize the FSA portion
of the FSIFSAID field.

ORDSSAD4
The 4-digit device address in printable form. This field will contain blanks if the
printer is a non-channel attached device.

ORDSSAD
The 3-digit device address in printable form. This field will contain blanks if the
printer is a non-channel attached device.

ORDSSNA
The device name in printable form. The device name is one of the keys that
JES gives the FSS/FSA so that it can select some device default
characteristics.

ORDSSPF1
This flag byte contains the JES spacing requirements for data sets printed on
this device. The following indicators may be set:

ORDSSS1 B‘10000000’
JES requires the FSA to single space the output.

ORDSSS2 B‘01000000’
JES requires the FSA to double space the output.

ORDSSS3 B‘00100000’
JES requires the FSA to triple space the output.

ORDSSSR B‘00010000’
JES requires the FSA to space the output according to the requirements of
the individual data set.

ORDSSPF2
This flag byte either specifies the type of JES checkpoint interval to be used for

Establishing FSA/JES Communication

40 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

output checkpointing on this device or specifies that the checkpoint feature
should be disabled for this device. One of the following indicators may be set:

ORDSSKP B‘10000000’
JES requires the FSA to take output checkpoints based on the page count
specified in the ORDSSKI field.

ORDSSKT B‘01000000’
JES requires the FSA take output checkpoints based on the time elapsed
specified in the ORDSSKI field.

ORDSSKN B‘00100000’
JES requires the FSA to disable the checkpoint feature.

ORDSSPF3
This flag byte specifies whether or not the FSA should use the NPRO
(non-process runout) timer interval specified in ORDSSNI. The NPRO time
interval is the interval during which output remains in the paper path but has not
reached the stacker. This parameter is only valid for pipeline devices. After the
NPRO timer specification has elapsed, the FSA forces the output to the stacker.
One of the following indicators may be set:

ORDSSDN B‘10000000’
JES requires that the NPRO timer be disabled.

ORDSSIN B‘01000000’
JES requires that the NPRO timer interval value specified in the ORDSSNI
field be used.

ORDSSKI
The initial checkpoint interval value.

ORDSSNI
The initial NPRO (non-process runout) time interval value.

ORDSS2LN
The length of the message routing information area (JES3 only).

ORDSS2FL
This flag byte specifies how JES3 wants FSA-related messages routed (JES3
only). The following indicator can be set:

ORDSS2CS B‘10000000’
JES has specified a console ID in field ORDSS2CN.

ORDSS2RC
An MCS routing code mask for FSA-related messages (JES3 only).

ORDSS2CN
The console ID in WTO format where FSA-related messages are to be routed
(JES3 only).

Initializing the FSA
The FSS decides if it is able to process the START FSA order. If it can, it attaches
an FSA task which will then complete the initialization process. If the FSS cannot
process the order, it must respond by using the FSIREQ SEND function call to
indicate order processing was unsuccessful.

As the FSA initialization process continues, the FSA task uses the values passed in
the device initialization area of the START FSA order. The initialization parameters

Establishing FSA/JES Communication

Chapter 7. Establishing FSA/JES Communication 41

included in the device initialization are spacing requirements, checkpoint interval
requirements, and NPRO (non-process runout) requirements. The preceding section
describes these parameters in detail.

The FSA is now responsible for responding to the START FSA order. The proper
asynchronous responses to this order are:

v If processing is successful - FSA level CONNECT

v If processing is unsuccessful - SEND with the RESPRETC field set to a non-zero
value

FSA Successfully Started
If the FSA is successfully initialized, the FSA issues the FSA-level FSIREQ
CONNECT request. This is the response to the START FSA order.

Preparing for FSA CONNECT
Before the FSA can issue the FSA level CONNECT, it must:
v Provide an 18-word save area
v Initialize the CONNECT parameter list.

Initializing the FSIREQ Connect Parameter List
The following figure shows the connection between the different sections of the
FSIREQ parameter list.

The FSA needs to initialize the following parameters before it issues the FSIREQ
CONNECT request.

Field Name Value (bytes) Value to be Assigned

Common Parameter Header (IAZFSIP)

FSILEN 4 Length of CONNECT parameter list

FSIFUNC 4 FSICON

FSIFSID 4 The FSS/FSA identifier

CONNECT Function Dependent Area (CDFPARM)

CDFFLGR2 1 Specifies functions that require operator
intervention

CDFSTOR 4 Address of storage for SSOB/SSIB pair

PARM HEADER
(IAZFSIP)

CON/DCON PARM
(CDFPARM)

CDFPAIRS

Figure 14. FSIREQ Parameter Lists for FSA CONNECT

Establishing FSA/JES Communication

42 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Field Name Value (bytes) Value to be Assigned

CDFFDATA 4 Address of a control block containing FSA
information

CDFIDNO 4 2 (Number of function ID/address pairs in
pointed to by CDFIDNA)

CDFIDNA 4 Address of the function ID/address pair

CDFSSID 4 Name of the JES that the FSA is connected
to

FSILEN
The length of the entire CONNECT parameter list. The CONNECT parameter
list consists of the IAZFSIP common header section and the CONNECT
function dependent section.

FSIFUNC
The CONNECT function ID number. The FSA assigns the symbolic value
FSICON to this field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.

FSIFSSID
This field contains the FSS portion of the FSS/FSA identifier.

FSSFSAID
This field contains the FSA portion of the FSS/FSA identifier. Use the value
JES passed in the ORDSSAD field of the START FSA order parameter list
to initialize this field.

CDFFLGR2
This flag byte specifies the operator intervention required functions that the
device supports. If any of these bits are set, intervention orders for all of these
functions are sent to the FSA. The FSA should only process the ones it can and
ignore any others. One or more of the following indicators can be set:

CDFFL2BT B‘10000000’
The device supports BTS (burster-trimmer-stacker) intervention.

CDFFL2FL B‘01000000’
The device supports flash intervention.

CDFFL2FO B‘00100000’
The device supports forms intervention.

CDFFL2CF B‘00010000’
The device supports continuous forms intervention.

CDFFLGR3
This flag byte specifies the JES functions that the FSA supports. The following
indicator can be set:

CDFFL3MS B‘10000000’
The device supports extended message routing (JES3 only).

CDFSTOR
The address of the storage for the contiguous SSOB/SSIB pair.

CDFFDATA
The address of a control block containing FSA information that JES returns

Establishing FSA/JES Communication

Chapter 7. Establishing FSA/JES Communication 43

when it invokes the FSI POST and FSI ORDER routines. This parameter
enables the FSA to pass control information through FSIREQ to its POST and
ORDER routines.

CDFIDNO
The number of function ID/address pairs pointed at by CDFIDNA. JES uses this
number to determine how many pairs are contained in the CDFPAIRS portion of
the CONNECT parameter list.

CDFIDNA
The address of the first pair of function ids and their respective addresses. The
FSA level functions included in this section are FSIORDER and FSIPOST.

CDFSSID
Name of the JES that the FSA is connected to. If this parameter is not
specified, the FSA is connected to the primary JES defined to your installation.

CDFFLGS1
Indicates functions supported by JES. This field is set in the FSS connect
parameter list.

CDFS1INT B’10000000’
Unsolicited send for intervention conditions

CDFS1ETE B’01000000’
Support for environmental type errors

CDFS1A31 B’00100000’
Support for AMODE 31

CDFS1ESS B’00010000’
Support for ESS keywords

CDFS14DG B’00001000’
Support for 4-digit hexadecimal device numbers

Issuing the FSA Level FSIREQ CONNECT Request
When the FSA has completed initializing the CONNECT parameter list, it uses the
FSIREQ macro to invoke the FSI CONNECT service. The format of this macro call
is:
FSIREQ REQUEST=FSICON,PARM=CONNECT parm-list-address,

TARGET=JES,FSID=fsid

Refer to “Chapter 4. The FSIREQ Macro” on page 13 for a complete description of
each operand on this macro and any defaults that you can take.

FSA CONNECT Processing
When JES receives the FSA CONNECT request from the FSA, JES validates the
FSA information and builds FSI-related control blocks for use by both the FSS and
JES.

Diagnosis, Modification or Tuning Information

JES initializes the second FSA FSCT with the addresses of the FSI service routines
that JES provides. When the FSA issues a request, the FSIREQ macro uses these
addresses to branch into the appropriate JES-provided routines.

End of Diagnosis, Modification or Tuning Information

Establishing FSA/JES Communication

44 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

How JES Handles Logic Errors and Abends
JES may not be able to connect the FSA for one of the following reasons:
v The parameter list is incorrect
v The function code is invalid
v The FSS identifier or the FSA identifier is invalid
v The FSA is trying to connect before the FSA is fully connected
v The FSA is already connected

If JES could not connect the FSA, the value in register 15 is non-zero to indicate
that the FSA should abnormally terminate. The FSS should correct whatever
caused the error and reissue the FSA CONNECT request.

How JES Monitors Timing of FSA CONNECT
When JES issues the START FSA order to the FSS, it starts a timer. If the FSA
does not respond with a FSA CONNECT within five minutes JES issues a STOP
FSA order to the FSS. Refer to “Chapter 12. Stopping an FSA” on page 105 for
more information about the STOP FSA order.

FSA Could Not Be Started
Depending on why the FSA could not be started, either the FSS or the FSA itself
notifies JES. The FSS can decide in its order routine that the FSA START order is
to be rejected. In this case, the FSS sets a non-zero return code in register 15 in
response to the order. If the FSS does this, JES will destroy the address space that
the FSS is running in.

If the FSS determines in its mainline code that it could not start the FSA, the FSS
indicates this condition in the order response area (IAZRESPA). The FSS then
issues an FSIREQ SEND request in response to the START FSA order to notify
JES that the FSA could not be started.

If the FSA determines that it cannot issue the FSA CONNECT, it will notify JES by
issuing a FSIREQ SEND function call with RESPRETC set to a non-zero value.

Establishing FSA/JES Communication

Chapter 7. Establishing FSA/JES Communication 45

46 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 8. Starting an FSS Device

Successful completion of FSA level CONNECT processing causes JES to issue the
START device order to the FSA. When the FSA receives the START device order, it
performs device processing and then responds to JES. IBM recommends that all
device initialization be done by the START FSA routine. Therefore, the START
device routine is the signal for the FSA to begin issuing GETDS requests. Once the
device is started, it can begin requesting data sets from JES for output processing.

The topics that follow explain how the FSA processes the START device order and
responds to JES.

Processing the START Device Order
To start a device that is running under control of an FSS, JES issues the start
device order to the FSA’s FSI ORDER routine. JES passes the address of the
START device order parameter list in register 1. Refer to Figure 16 on page 48 for a
description of the START device parameter list.

When the FSI ORDER routine receives the order, it:

v Determines the type of order issued

v Either processes the order immediately or posts the appropriate FSA task to
process the order.

The value of the ORDID field in the common order header section of the START
device order parameter list represents the type of order the FSA needs to process.

Note: If the order is something that may take a while and therefore can be
answered asynchronously, IBM recommends that the FSA order routine
notify the FSA that there is an order to process and immediately return
control to JES. The FSI order and post routines are part of the FSS and
FSA. However, JES invokes the FSI order and post routines and they run
under a JES TCB or SRB.

JES CODE FSS/FSA CODE

Address space created
FSS Initialization
FSS Connect Request
FSIREQ REQUEST=FSICON

Receive response of started device

START procname...

Issue Start FSA
FSIREQ REQUEST=FSIORDER

Issue start device
FSIREQ REQUEST=FSIORDER

Initialize PRINTER
FSIREQ REQUEST=FSISEND

WAIT

FSS waits for orders

FSA waits for orders

WAIT

WAIT

FSA Initialization
FSA Connect Request
FSIREQ REQUEST=FSICON

1

2

3

4

6

5

Figure 15. An Overview of FSI Startup Processing

© Copyright IBM Corp. 1988, 2001 47

The START device order parameter list consists of the following sections:
v Common parameter header
v Common order header
v START order function dependent section.

The following figure shows the connection between the different sections of the
FSIREQ parameter list.

The following table shows the parameters that JES initializes for the START device
order. The values that JES assigns are explained after the table.

Field Name Length
(bytes)

Value JES Assigned

Common Parameter Header

FSILEN 4 Length of START order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA identifier

Common Order Header

ORDFDATA 4 Information supplied to JES in the FSS/FSA
CONNECT parameter list (CDFFDATA)

ORDRSPAD 4 Address of the order response area

ORDID 2 ORDSTDEV

START Order Function Dependent Section

ORDSSSP 4 0

ORDSSID 4 FSA identifier of device to start

ORDSSAD4 4 Device address in 4-digit format

ORDSSAD 3 Device address in 3-digit format

ORDSSNA 8 Device name

FSILEN
The total length of the START order parameter list. The START order parameter
list consists of the common parameter header, the common order header and
the START order header.

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

START/STOP
(ORDSS)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 16. FSIREQ Parameter Lists for the Start Device Order

Starting a Device

48 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

FSIFUNC
The ORDER ID number. JES assigns the symbolic value FSIORDER to this
field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.

ORDFDATA
The address of a control block containing FSA-related information. The FSA
passed this address to JES in the CDFFDATA field of the CONNECT parameter
list. JES returns this value in the START device order parameter list so that the
FSA’s FSI ORDER routine can start the appropriate FSA task to process the
order.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The START device order ID number. JES assigns the symbolic value
ORDSTDEV to this field.

ORDSSSP
This field is set to zero. JES supplies the address of the device initialization
area in this field for the START FSA order only.

ORDSSID
The FSS/FSA identifier of the device to start.

ORDSSSI
The FSS section of the FSA identifier.

ORDSSAI
The FSA section of the FSA identifier.

ORDSSAD4
The 4-digit device address in printable form. This field will contain blanks if the
printer is a non-channel attached device.

ORDSSAD
The 3-digit device address in printable form. This field will contain blanks if the
printer is a non-channel attached device.

ORDSSNA
The device name in printable form.

Notifying JES of Device Status
When the FSA’s FSI order routine receives the START device order from JES, the
FSA decides whether it can start the device immediately, or needs to perform
additional processing before starting the device. Refer to “Chapter 5. FSI
Communication” on page 17 for information about responding to an order from JES.

SEND Processing
When JES receives the SEND request, it processes the return code set by the FSA
in the RESPRETC field of the order response area. If the return code is zero, JES
is ready to accept GETDS requests. If the return code is non-zero, JES issues a
STOP FSA order. Refer to “Chapter 12. Stopping an FSA” on page 105 for more
information about the STOP FSA order.

Starting a Device

Chapter 8. Starting an FSS Device 49

50 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 9. Issuing Data Requests to JES

After an FSA notifies JES (using the FSI SEND request) that it successfully started
the associated device, it is ready to begin data set processing. As part of data set
processing, the FSA invokes the FSI data access services (GETDS, GETREC,
FREEREC, RELDS, and CKPT) to:

v Obtain a SYSOUT data set and its characteristics from JES, as described in
“Getting a SYSOUT Data Set (GETDS)”

v Obtain logical records of an obtained data set, as described in “Getting SYSOUT
Records from an Acquired Data Set” on page 69

v Release logical records for a data set to JES, as described in “Releasing a
SYSOUT Record” on page 76

v Release an obtained data set to JES, as described in “Releasing a SYSOUT
Data Set” on page 79

v Request JES to record checkpoint information for a JES spool data set currently
being processed by the FSA device. as described in “Requesting a Checkpoint of
Processing” on page 83.

The information provided for each of the FSI data access services on the following
pages explain:

v The tasks required to invoke the FSI service

v The FSI service processing

v The information that JES returns in response to the FSIREQ request.

JES groups similar data sets together and prints them between a set of separator
pages. A header separator page starts a group and a trailer separator page ends a
group. Therefore, when the FSA receives a request from JES to process a data set,
the request will include separator page information related to that data set’s position
within the group.

For example, the first data set in a group will have a header separator page and the
last data set in a group will have a trailer separator page. Data sets between the
first and the last will not have header or trailer separator pages.

Getting a SYSOUT Data Set (GETDS)
An FSA obtains a JES spool data set and its characteristics for output processing
by invoking the FSI GETDS service. The following are places the FSA gets data set
characteristics in addition to the characteristics it gets during GETDS processing:

v The job separator page area (JSPA) whose address is in the GETDS parameter
list.

v The job management record (JMR) whose address is in the JSPA.

v The scheduler work blocks whose address is in the GETDS parameter list. This
is the major place to find basic SYSOUT attributes from the end user’s JCL and
installation defaults.

v The device settings, set explicitly from the START FSA order and possible reset
by using the SET order.

v The device setting that might be implicitly set by the FSA due to the device name
or UCB name that JES passes.

© Copyright IBM Corp. 1988, 2001 51

The FSI GETDS service is functionally equivalent to allocating and opening a
SYSOUT data set. The FSA does not specify data set selection criteria in the
GETDS request; it makes a request for the next available data set. JES uses its
own work selection criteria to provide the most appropriate data set to the FSA. If
no data set is available for processing, JES notifies the FSA that it could not satisfy
the GETDS request. The FSA should not issue any more GETDS requests until the
FSA is notified that work is available. When work becomes available, JES notifies
the FSA via the FSIREQ POST function that it can reissue the GETDS request.

JES does not restrict the number of data sets that can be allocated to the FSA
concurrently. Thus, the FSA can issue multiple GETDS requests without intervening
RELDS requests. However, in a JES3 environment all GETREC requests will be
satisfied from the last GETDS request.

The following figure shows the connection between the different sections of the
FSIREQ parameter list for GETDS processing. The individual parts of this diagram
are explained in this section.

JES CODE FSA CODE

Works is available
Select WORK
Fill WORK REQUEST

Select WORK
Tell FSA work exists
FSIREQ REQUEST=FSIPOST

Process RELDS
Closes the data set and deallocates
its storage

No work found
Return from GETDS
Indicating no work available

Fill WORK REQUEST

Build INDEX and Parameter list

Process FREEREC

PROCESS RECORD

Next GETDS

Issue GETDS Request
FSIREQ REQUEST=FSIGDS

Respond to Post
FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST
FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request
FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST
FSIREQ REQUEST=FSIGREC

WAIT

WAIT

WAIT

WAIT

1

2

2c

2d
3

5

7

4

6

8

2a

2b

Figure 17. An Overview of FSI Data Set Processing

GETDS

52 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

The following sections explain the tasks the FSA must complete to invoke the FSI
GETDS service.

Providing an FSA Checkpoint Area
The FSA must place the address of a checkpoint area in the GETDS parameter list.
JES uses this area to return information that allows a previously interrupted data set
to continue printing from the point indicated by the last valid checkpoint. When the
FSA invokes the FSI GETDS service, JES retrieves any checkpoint information for
the data set assigned to the FSA and moves that information into the FSA-provided
checkpoint area. If JES has filled in the checkpoint area, the GDSCKP bit is turned
on.

When the FSA establishes a checkpoint area, the address of the checkpoint area
should be placed in the GDSCKPA field. The length of the checkpoint area should
be stored in the GDSCKPL field.

IBM recommends that the size of this checkpoint area be large enough to
accommodate both the IAZCHK FSI checkpoint record and any FSA device
dependent checkpoint information. The IAZCHK macro is the JES base checkpoint
information mapping. Any device dependent information must be placed at the end
of the JES base. The length that is stored in GDSCKPL is the combination of both
the JES base and device dependent sections.

The FSA should establish (GETMAIN) a unique checkpoint area for each
concurrently active data set that it is processing. For example, if the FSA issues
one GETDS, processes all the records, and then releases the data set, only one
checkpoint area is needed. If the FSA issues several GETDS requests and
processes them at the same time, several checkpoint areas are needed.

Initializing the GETDS Parameter List
Both the FSA and JES use the FSIREQ GETDS parameter list to pass information
to one another. The FSA must initialize certain fields of the FSIREQ GETDS
parameter list for each issuance of the GETDS request. The following table lists the
required fields, the lengths of these fields, and the values that the FSA must assign.
Detailed descriptions of the value assignments follow this table.

PARM HEADER
(IAZFSIP)

GETDS PARM
(GDSPARM)

CHECKPOINT AREA
(IAZCHK)

JOBSEPARATOR AREA
(IAZJSPA)

Figure 18. FSIREQ Parameter Lists GETDS Processing

GETDS

Chapter 9. Issuing Data Requests to JES 53

Field Name Length
(bytes)

Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of GETDS parameter list

FSIFUNC 4 FSIGDS

FSIFSID 4 The FSS/FSA IDs

FSIPEXT 4 The extension area address

GETDS Function Dependent Section

GDSCKPL 4 Length of FSA checkpoint area

GDSCKPA 4 Address of FSA checkpoint area

GDSDSID 12 0 (zero)

FSILEN
The length of the entire GETDS parameter list. The GETDS parameter list
consists of both the IAZFSIP common header section and the GETDS function
dependent section.

FSIFUNC
The GETDS function ID number. The FSA assigns the symbolic equate value
FSIGDS to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

FSIPEXT
If this field is non-zero, then there is an existing extension to this parameter list.
The address of the extension is the contents of this field. See the Appendix for
structure of extension area.

GDSCKPL
The length of the FSA checkpoint area.

GDSCKPA
The address of the FSA checkpoint area.

GDSDSID
The FSA must clear this field to zero before each issuance of the GETDS
request because JES assigns the data set identifier to this field.

Issuing the FSIREQ GETDS Request
When the FSA has completed initializing the GETDS parameter list, it issues the
FSIREQ macro to invoke the FSI GETDS service. The format of this macro call is:
FSIREQ REQUEST=FSIGDS,TARGET=JES,PARM=GETDS parm-list-addr, FSID=value-addr

See “Chapter 4. The FSIREQ Macro” on page 13 for a complete description of each
operand on this macro and the defaults that may be taken.

JES GETDS Processing
The JES-supplied GETDS routine in the FSS address space receives control when
the FSA issues the FSIREQ GETDS macro. This routine communicates with the
JES address space to process GETDS requests. The basic function of GETDS
processing is to attempt to satisfy the GETDS request immediately by selecting a
JES output data set and then despooling that data set to the FSA. JES uses its
own data set selection criteria to select the appropriate data set.

GETDS

54 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

If no errors occur during GETDS processing and a data set is available, JES
retrieves any checkpoint information for the data set and moves that information
into the checkpoint area provided by the FSA. JES also determines the JES
characteristics and retrieves a pointer to the scheduler work blocks for this data set.
The scheduler work blocks represent the data set’s characteristics that were
specified in the job’s JCL. Finally, JES initializes the GETDS parameter list with the
data set information and sets a return code of zero in register 15. JES then returns
control to the FSA.

If no errors occur during GETDS processing but a data set is not available, JES
sets the GDSNALLC flag on in the GETDS parameter list and sets a return code of
zero in register 15. JES then returns control to the FSA. See “No Work Exists for
Printing” on page 65 for more information.

If an error occurs during GETDS processing (for example, JES detects that the
length of the GETDS parameter list is invalid), JES sets the GDSNALLC flag on in
the GETDS parameter list and sets a non-zero return code in register 15. JES then
returns control to the FSA. When the FSA receives a non-zero return code it should
abnormally terminate and take a dump.

Information Returned from GETDS Processing
On return from successful GETDS processing, the GETDS parameter list contains
the following information:

Field Name Length
(bytes)

Value Assigned

Common Parameter Header Section

FSILEN * 4 Length of the GETDS parameter list

FSIFUNC * 4 FSIGDS

FSIFSID * 4 The FSS/FSA IDs

FSIPEXT* 4 The extension area address

GETDS Function Dependent Section

GDSFLGR1 1 JES printing requirements for the data set

GDSFLGR2 1 SWB requirements for job header/trailer
pages

GDSFLGS1 1 GETDS processing status information

GDSCKPL * 4 Length of FSA checkpoint area

GDSCKPA * 4 Address of the FSA checkpoint area

GDSJSPA 4 A pointer to the JSPA

GDSOUTK 8 The OUTPUT SWB token

GDSJDVTN 8 The JDVT name used at data set creation

GDSDSID * 12 The data set identifier

GDSRECFM 1 The data set record format

GDSMRECL 2 The data set record length

GDSSJMSG 80 The SJF error message. This field is
initialized only if the GDSFLGS1 flag byte
indicates that an error occurred in SJF
processing.

GETDS Function Dependent Extension Area

FSIEGLEN 2 Extension area length

GETDS

Chapter 9. Issuing Data Requests to JES 55

Field Name Length
(bytes)

Value Assigned

FSIEGVSN 2 Version number field

FSIEGFID 4 Extension function ID

FSIEGUTK 80 User token

FSIEGRTK 80 Resource token

FSIEGOGT 20 Output group token

The fields with an asterisk (*) contain values set by the FSA when it issued the
GETDS request. The fields that JES set or reset during GETDS processing are
described in detail below:

GDSFLGR1
This flag byte contains the JES printing requirements for the data set returned
to the FSA. The following indicators may be set:

GDSJHDR B‘10000000’
JES requires the FSA to print a job header page for the data set.

GDSJTRL B‘01000000’
JES requires the FSA to print a job trailer page for the data set.

Note: JES may optionally issue a SYNCH order to request a job trailer
page for the data set.

GDSHDR B‘00100000’
JES requires the FSA to print a data set header page.

GDSHTDS B‘00010000’
JES requires the FSA to print the data set on the same page as the job
header or trailer page. If this flag is set, either the job header or job trailer
flag is also set, but never both. JES sets this flag only if it has assigned the
JESNEWS data set to the FSA.

GDSFRMRK B‘00001000’
JES requires a form mark on the separator page.

GDSCMC B‘00000100’
JES requires the FSA to change the copy mark for each data set. For a
stacking machine, a change of the copymark is equivalent to an offset of
the paper. For a machine without a stacker, the copymark is a black
tickmark on the bottom of the page.

GDSCMCPY B‘00000010’
JES requires the FSA to change the copy mark for each copy.

GDSTRKDS B‘00000001’
JES requires the FSA to track the data set and issue an FSIREQ SEND
request when the data set reaches the operator observation point. See
“Notifying JES that the Data Set Reached the OOP” on page 67 for
information about handling this requirement.

GDSFLGR2
This flag byte contains the installation defined printing requirements for the data
set returned. The following indicators may be set:

GETDS

56 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

GDSJHSWB B‘10000000’
The FSA is to use FSA header defaults, if they exist, defined for the job
header page when printing the data set. JES sets this flag only for the
JESNEWS data set.

GDSJTSWB B‘01000000’
The FSA is to use FSA trailer defaults, if they exist, defined for the job
trailer page when printing the data set.

GDS2EOG B‘00100000’
End of output group.

GDSFLGS1
This flag byte contains status information related to GETDS processing. The
following indicators may be set:

GDSCKP B‘10000000’
The checkpoint area contains valid information that the FSA may use to
restart the processing of a previously interrupted data set. See “Information
Contained in the FSA Checkpoint Area” on page 64 for a description of
each field.

GDSALLOC B‘01000000’
JES successfully allocated a data set to the FSA.

GDSRSTCT B‘00000100’
JES requires the FSA to reset the group page and record counts that the
FSA keeps track of for the QUERY order. See “The Query Order” on
page 87 for more information about information returned to JES for a
QUERY order.

GDSSJERR B‘00000010’
The JES GETDS service routine detected an error in scheduler JCL facility
(SJF) processing. The GDSSJMSG field contains a detailed error message
that the FSA is to display.

GDSJSPA
A pointer to a job separator page data area (JSPA). The JSPA contains job and
data set related information that the FSA may use to generate header and
trailer pages (if required), and SMF Type 6 records. The section “Information
Contained in the JSPA” on page 58 shows the possible settings for each JSPA
field.

GDSOUTPK
The OUTPUT SWB token. The FSA uses this token to interface with the
scheduler JCL facility (SJF) to acquire the data set’s characteristics specified on
the JCL OUTPUT statement. “The Scheduler JCL Facility” on page 117
describes how to invoke SJF services and retrieve JCL data set characteristics.

GDSJDVTN
The JCL definition vector table (JDVT) name used at data set creation. The
FSA uses this table to let the Scheduler JCL Facility (SJF) know what JCL to
use for the SJF RETRIEVE service. See “Using SJF Services” on page 118 for
more information about the SJF RETRIEVE service.

GDSDSID
The data set identifier. The FSA uses this identifier in subsequent FSI service
requests (GETREC, FREEREC, RELDS, CHKPT, and ORDER) to uniquely
identify the data set.

GDSRECFM
The data set record format as defined in the JFCB.

GETDS

Chapter 9. Issuing Data Requests to JES 57

GDSMRECL
The data set record length. This is the largest record length with which the data
set was opened.

GDSSJMSG
The message text describing the SJF error that occurred. JES initializes this
field only if the GDSSJERR indicator is set in the GDSFLGS1 flag byte
indicating that an error occurred in SJF processing. The FSA is to print this
error message with the data set.

FSIEGLEN
The length of the extension area.

FSIEGVSN
The version number of the extension area.

FSIEGFID
The function ID for which this extension is created.

FSIEGUTK
This field contains the security token for the data set’s. creator

FSIEGRTK
This field contains the security token of the data set.

FSIEGOGT
This field contains a number that uniquely identifies an output group.

Information Contained in the JSPA
When JES returns control to the FSA, it indicates in the GETDS parameter list the
job header, job trailer, and data set header requirements. It also provides a pointer
in field GDSJSPA to the JSPA created for the assigned data set regardless of
whether or not a separator page is requested by JES.

The JSPA contains job and data set related information that the FSA may use to
generate the header and trailer pages. JES does not make requirements as to what
information from the JSPA should be included on these pages.

The FSA determines how it will create the separator pages, and may freely use any
or all fields passed to it in the JSPA for those pages. The FSA may also use the job
related information in the JSPA to generate an SMF type 6 record for the assigned
data set.

The JSPA consists of:
v A common JES section,
v A JES dependent section, and
v A user dependent section.

The IAZJSPA is returned to the caller above or below the 16 megabyte line based
on the connect parameters supplied by the FSS (Bit CDFFL331 in byte CDFFLGR3
is supplied by the FSS during FSS connect to indicate if the FSS is running
AMODE(31). The structure of the IAZJSPA control block may be seen in Figure 19
on page 59.

GETDS

58 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

It also may contain one or more data extensions which contain additional
information about the returned data set.. The fields in the JES dependent section
may or may not be set depending on whether the JES connected to this FSA scans
for their associated information and whether the information was provided (for
example, the programmer name may not have been specified).

GETDS Function of the IAZFSIP Parameter List

IAZFSIP

GDSPARM GETDS
Parms

GDSJSPA

IAZJSPA

JSPAJES

JSPAUSER

Start of extensions

possible extension

possible extension

possible extension

last extension

JSPEXT
JSPEXNUM
JSPEXLEN
4 Reserved Full-

words

JSPCEXT
JSPCELEN
JSPCEVSN
JSPCECID

JSPCEUID
JSPCESEC
JSPCEDSN
JSPCESEG

*
*
*

*
*
*
*

JSPALEN Halfword

.

.
JSPA1EXT Bit

.

.

.
JSPAJMR Address

.

.

.

.

.

.

.

.

Pointer to returned IAZJSPA

Job Page Separator Area (JSPA)

’Common Section’
(First of three in ’base’ JSPA)

’JES Dependent Section’
(Second of three in ’base’ JSPA)

’User Dependent Section’
(Third of three in ’base’ JSPA)

’JSPA Extensions’
Extension Header start
(Only one extension header)

Data fields specific to the
’IBM Common Extension)

each containing length,
version number, and
extension id, followed by
specific data fields for
that particular extension.
(Currently, only one extension
is defined, the ’IBM Common
Extension’)

Multiple Extensions may exist

Each extension follows - each
extension contains the following
four fields (named differently):
Start of Extension (label)
Length of Extension (halfword)
Version Number (halfword)
Extension ID (fullword)

JSPALEN - length of
the base JSPA

JSPA1EXT - extensions follow
at the end of ’base’ JSPA

JMR Address - last field in
’common’ section

JES - Section end

User - Section end

JSPJEND *

JSPUEND *

.

.

.

.

.

.

JSPABEND

B

A

S

E

J

S

P

A

e

x

t

e

n

s

i

o

n

a

r

e

a

exten-
sion hdr

a

single

extension

possible

other

exten-

sions

JSPJSIZE

JSPUSIZE

JSPEJSPS JSPEHSZE

JSPECSZE

JSPASIZE

JSPESIZE

Figure 19. The IAZJSPA (Job Separator Page Area)

GETDS

Chapter 9. Issuing Data Requests to JES 59

In addition, the JES3 user exit IATUX45 allows the user to modify the information in
the JES sections and/or expand the JSPA with user defined information, while the
JES2 user exit 23 allows the user to modify or expand the user section of the
JSPA. If the FSA is to take advantage of information in the user dependent section,
it must provide its own user exits. Otherwise it is concerned only with the
information in the JES sections. For more information about IATUX45 or user exit
23, see the appropriate JES Customization book.

The pointer out of the GDSPARM area is shown, along with the possible 3 sections
of the BASE JSPA, the Extension Header, and the mapping of the ‘IBM Common
Extension’. The equated sizes are shown, but are only accurate at assembly-time.

To obtain the start of the extension area (JSPEXT), the user should add the
contents of field JSPALEN to the starting address of the JSPA. Then, the extension
header is a fixed size, and field JSPEXLEN contains the lengths of all extensions
(not including the extension header).

The following table lists the individual JSPA fields and the lengths of these fields,
and the values that may have been set. Any fields not containing values are set to
binary zeroes unless otherwise noted.

Table 3. IAZJSPA Macro

Field Name Length (bytes) Assigned Value

Common Section (All fields are set by either JES2 or JES3)

IAZJSPA (JSPA) 0 DSECT mapping name

JSPAID 4 JSPA

JSPALEN 2 Length of the IAZJSPA base section

JSPAFLG1 1 Flag byte

JSPAJBNM 8 Job name

JSPAJBID 8 Job id

JSPADEVN 8 Device name assigned to the FSA that is associated
with the device being used to process the returned
data set.

JSPADEVA 4 The 3-character or 4-character device address in
EBCDIC of the device named in JSPADEVN. See
explanation below.

JSPAJMR 4 Address of the JMR (job management record)

JES Dependent Section (The values are determined by JES)

JSPAJES 0 Start of JES dependent data area

JSPJGRPN 8 Output group name from the job output element
(JOE)

JSPJGRP1 2 Output group first ID from the job output element
(JOE)

JSPJGRP2 2 Output group second ID from the job output element
(JOE)

JSPJGRPD 8 Output group’s DESTID

JSPJRMNO 4 Room number from the JCT associated with the
owning job

JSPJPNAM 20 Programmer name from the JOB statement

GETDS

60 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Table 3. IAZJSPA Macro (continued)

Field Name Length (bytes) Assigned Value

JSPJDSNM 24 Three part DD name assigned by JES to the
returned SYSOUT data set

JSPJDSPN 8 Procedure name component of JSPJDSPN

JSPJDSSN 8 Step name component of JSPJDSPN

JSPJDSDD 8 DD name component of JSPJDSPN

JSPJSOCL 1 SYSOUT class of the data set

JSPJPRIO 1 Priority of the data set

User Dependent Section

JSPAUSR1 4 Reserved for the user

JSPAUSR2 4 Reserved for the user

Mappings of the extensions

JSPEXT 0 Start of the extension area

JSPEXNUM 2 Number of extensions

JSPEXLEN 2 Length of all extensions

Mappings of IBM Common Extension

JSPCEXT 0 Start of the IBM Common Extension

JSPCELEN 2 Length of IBM Common Extension

JSPCEVSN 2 Version number of this extension

JSPCECID 4 Id of this extension

First data field of the extension at offset +8

JSPCEUID 8 Userid associated with this data set

JSPCESEC 8 Security label (SECLABL) of this data set.

JSPCEDSN 53 Fully-qualified (including node name) data set entity
name

JSPCESEG 4 Segment number associated with this data set

IAZJSPA (JSPA)
The DSECT mapping name.

JSPAID
JSPA

JSPALEN
The length of the IAZJSPA base section not including the extension header or
any extensions. If JSPA1EXT is set, the value in this field added to the starting
address of IAZJSPA is the address of the extension header. This value is used
to obtain the address of JSPEXT.

JSPAFLG1
The flag byte is defined as follows:

v JSPA1CON identifies this data set as a continuation of a previously-passed
output group. The bit may be used to signify that this output group has may
have portion(s) previously returned to a print device and that this particular
returned data set might not start at the beginning of the data set.

v JSPA1EXT signals that one or more extensions follow the base IAZJSPA.

GETDS

Chapter 9. Issuing Data Requests to JES 61

v JSPA1UND signals that the user id contained in field JSPCEUID is undefined
and is not a valid user id.

v JSPA4DG signals that the device number is in 4-digit format.

JSPAJBNM
The job name that is assigned to the job that created this data set.

JSPAJBID
The job id assigned to the job that created this data set.

JSPADEVN
The device name assigned to the FSA that is associated with the device being
used to process the returned data set.

In JES2, it is the PRT(nnnn) name of the device as assigned on the local
printer initialization statement.

In JES3, it is the JNAME of the device as assigned on the DEVICE
initialization statement.

JSPADEVA
The device address in EBCDIC of the device named in JSPADEVN. If
JSPA4DG in JSPAFLG1 is ON, this field contains the 4-digit device number;
otherwise, it contains the 3-digit device number in the first 3 bytes.

JSPAJMR
The address of the JMR (job management record) associated with the job that
created this data set. It is mapped by IEFJMR.

JSPAJES
The start of JES dependent data area.

JSPJGRPN
JES2 supplies the output group name from the job output element (JOE). JES3
does not use this field.

JSPJGRP1
JES2 supplies the output group first ID from the job output element (JOE).
JES3 does not use this field.

JSPJGRP2
JES2 supplies the output group second ID from the job output element (JOE).
JES3 does not use this field.

JSPJGRPD
JES2 supplies the output group’s DESTID.

JSPJRMNO
JES2 supplies the room number from the JCT associated with the owning job.
JES3 does not use this field.

JSPJPNAM
The programmer name from the JOB statement, if available, or blanks (X’40’s).

JSPJDSNM
The three part DD name assigned by JES to the returned SYSOUT data set (a
combination of JSPJDSPN, JSPJDSSN, and JSPJDSDD).

JSPJDSPN
The procedure name component of JSPJDSPN.

JSPJDSSN
The step name component of JSPJDSPN.

GETDS

62 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

JSPJDSDD
The DD name component of JSPJDSPN.

JSPJSOCL
The SYSOUT class of the data set.

JSJPRIO
The priority of the data set.

JSPAUSR1
This field is reserved for the user.

JSPAUSR2
This field is reserved for the user.

JSPEXT
The start of the extension area. The extension header follows. The header and
any extensions are only present if JSPA1EXT has been set in the base section.
See the description for field, JSPALEN in determining where the extension
header exists in storage.

JSPEXNUM
The number of extensions following this header.

JSPEXLEN
The length of all extensions following this header not including the extension
header itself.

JSPCEXT
The start of the IBM Common Extension. Extensions must have the same first
three fields containing the extension length, version, and id.

JSPCELEN
The length of IBM Common Extension. All extensions must have a 2 byte field
containing the length at this offset (+0) into an extension.

JSPCEVSN
The version number of this extension. All extensions must have a 2 byte field
containing the version at this offset (+2) into an extension. The following
versions exist:

1 - Reserved

2 - The following data fields are defined in the extensions: JSPCEUID,
JSPCESEC, and JSPCEDSN.

3 - All version 2 data fields exist plus JSPCESEG are defined as well.

JSPCECID
The id of this extension JSPCEXTI indicates this particular extension is the IBM
Common Extension. All extension’s data fields at offset +8 and beyond are
uniquely defined for any particular extension and begin after the id of the
extension. All extensions must have a 4 byte field containing the id at this offset
(+4) into an extension.

JSPCEUID
The userid associated with this data set. This value is available only if
JSPCEVSN is greater than or equal to 2.

JSPCESEC
The security label (SECLABL) of this data set. This value is available only if
JSPCEVSN is greater than or equal to 2.

JSPCEDSN
The fully-qualified (including node name) data set entity name in the format

GETDS

Chapter 9. Issuing Data Requests to JES 63

nodename.userid.jobname.jobid.number.name. This value is available only if
JSPCEVSN is greater than or equal to 2.

JSPCESEG
The segment number associated with this data set. This value is available only
if JSPCEVSN is greater than or equal to 3. Segment id is valid only when using
the SEGMENT= DD JCL keyword. JES3 does not support the SEGMENT=
keyword on the DD JCL statement thus this field is set to binary zeroes in
JES3.

Information Contained in the FSA Checkpoint Area
If valid checkpoint information exists for the data set assigned to the FSA, JES
moves this information into the FSA checkpoint area during GETDS processing.
The specific information provided depends on whether the data set was previously
being processed by an FSS- or JES-controlled device.

v If the data set was previously being processed by a JES-controlled device, JES
converts its own checkpoint data into the FSI checkpoint record format (IAZCHK)
and moves the record into the FSA checkpoint area.

v If the data set was previously being processed by an FSS-controlled device, JES
retrieves FSA-supplied checkpoint information that it recorded during FSI CHKPT
processing and moves that into the FSA checkpoint area. In this case, the FSA
checkpoint area contains the FSI checkpoint record (IAZCHK) (whose fields were
set by an FSA) and any FSA device dependent checkpoint information.

The following table lists the fields of the IAZCHK record, the length of each field,
and the values that may have been assigned.

Field Name Length
(bytes)

Assigned Value

CHKID 4 ‘CHK’ (FSI checkpoint record identifier)

CHKLNGTH 2 Length of FSI checkpoint record

CHKJESWK 64 JES dependent checkpoint information for
the data set. The FSA does not use this
information.

CHKRBA 8 The JES equivalent of a relative block
address (RBA). The FSA may use this
address in a subsequent GETREC request
to cause JES to begin accessing records at
this address.

CHKDEV 4 The device type

CHKMOD 4 The model number of the device

CHKCOPY 4 The number of copies that have been
printed

CHKTRNC 4 The transmission count

CHKREC 4 The count of spool records processed (line
mode records with a length of zero or
machine immediate carriage controls are not
counted).

CHKPAGE 4 The physical page count

CHKPROD 8 The product that created the checkpoint
record

CHKVER 4 The version of the product

CHKRELS 4 The release of the product

GETDS

64 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Field Name Length
(bytes)

Assigned Value

CHKMODF 4 The modification level of the product

CHKSERV 4 The service level of the product

No Work Exists for Printing
If JES cannot allocate a data set during GETDS processing, it sets the GDSNALLC
flag on in the GETDS parameter list and then returns control to the FSA. The
GDSNALLC flag indicates that no work is currently available and that JES will notify
the FSA, via the FSIREQ POST function, when it can satisfy the GETDS request.

The GETDS parameter list contains the following information:

Field Name Length
(bytes)

Value Assigned

Common Parameter Header Section

FSILEN * 4 Length of the GETDS parameter list

FSIFUNC * 4 FSIGDS

JES CODE FSA CODE

Works is available
Select WORK
Fill WORK REQUEST

Select WORK
Tell FSA work exists
FSIREQ REQUEST=FSIPOST

Process RELDS
Closes the data set and deallocates
its storage

No work found
Return from GETDS
Indicating no work available

Fill WORK REQUEST

Build INDEX and Parameter list

Process FREEREC

PROCESS RECORD

Next GETDS

Issue GETDS Request
FSIREQ REQUEST=FSIGDS

Respond to Post
FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST
FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request
FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST
FSIREQ REQUEST=FSIGREC

WAIT

WAIT

WAIT

WAIT

1

2

2c

2d
3

5

7

4

6

8

2a

2b

Figure 20. An Overview of Data Set Processing

GETDS

Chapter 9. Issuing Data Requests to JES 65

Field Name Length
(bytes)

Value Assigned

FSIFSID * 4 The FSS/FSA IDs

GETDS Function Dependent Section

GDSFLGS1 1 GDSNALLC (indicator for data set not
allocated)

GDSCKPL * 4 Length of FSA checkpoint area

GDSCKPA * 4 Address of the FSA checkpoint area

The fields with an asterisk(*) contain values set by the FSA when it issued the
GETDS request.

Notifying the FSA When Work Becomes Available
When JES determines that work is available, it notifies all FSAs that are waiting for
a data set and are eligible to process the work. Specifically, for each FSA, JES
issues an FSIREQ POST request to the FSA-supplied POST routine indicating that
GETDS requests can now be satisfied and should be reissued. When the FSA
POST routine receives the request, it is responsible for alerting the FSA which will
cause it to issue another GETDS request.

The following figure shows the connection between the different sections of the
FSIREQ parameter list for POST processing.

In the POST parameter list, JES passes the following information:

Field Name Length
(bytes)

Value Assigned

Common Parameter Header Section

FSILEN 4 Length of the POST parameter list

FSIFUNC 4 FSIPOST

FSIFSID 4 The FSS/FSA IDs

POST Function Dependent Section

POSTFLS1 1 POSTGDS

POSFDATA 4 CDFFDATA

FSILEN
The length of the POST parameter list, which consists of the common header
section and the POST function dependent section.

FSIFUNC
The POST function ID number. The symbolic equate FSIPOST represents this
value.

PARM HEADER
(IAZFSIP)

POST PARM
(POSTPARM)

Figure 21. FSIREQ Parameter Lists for POST Processing

GETDS

66 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

FSIFSID
The FSS/FSA IDs that JES assigned to the FSS/FSA during start up.

POSTFLS1
This status flag byte indicates the reason for the POST request. The following
indicator is set:

POSTGDS B‘10000000’
GETDS requests can now be satisfied.

POSFDATA
This field contains the value that the FSA passed to JES in the CDFFDATA field
of the CONNECT parameter list.

Processing the FSIREQ POST Request
The FSA POST routine uses the information passed in the POST parameter list to
activate the appropriate FSA. This information is pointed to by the POSFDATA field.
This field is filled in from the CDFFDATA field during connect processing. If the
POST processing is successful, the FSA POST is expected to return control to JES
with a zero return code in register 15. If an error occurs during processing, the FSA
POST routine is expected to set a non-zero return code in register 15 and then
return control to JES. Upon receiving a non-zero return code, JES will abnormally
terminate the FSS address space.

Notifying JES that the Data Set Reached the OOP
If JES sets the GDSTRKDS indicator on in the GDSFLGR1 flag byte in the GETDS
parameter list, the FSA is required to track the processing of the data set and then
notify JES when the data set reaches the operator observation point (OOP). JES
expects the FSA to issue an unsolicited FSIREQ SEND request and provide status
information in a response area. In this instance however, JES has not passed the
address of the response area (IAZRESPA). The FSA must format its own response
area according to the IAZRESPA mapping macro and provide its address in the
FSIREQ SEND parameter list.

Initializing the Order Response Area
The following table lists the IAZRESPA fields that require initialization, the length of
each field, and the values that the FSA must assign to those fields.

Field Name Length
(bytes)

Value to be assigned

Response Area Mapped by IAZRESPA

RESPID 4 ‘RESP’ (ID of response area)

RESPLEN 4 Length of response area

RESPOOPI 12 The identifier of the data set at the OOP

Initializing the SEND Parameter List
The following figure shows the connection between the different sections of the
FSIREQ parameter list for Send processing.

GETDS

Chapter 9. Issuing Data Requests to JES 67

The following table below lists the fields in the SEND parameter list that require
initialization, the length of each field, and the values that the FSA must assign to
those fields. Detailed value assignments follow this table.

Field Name Length
(bytes)

Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of SEND parameter list

FSIFUNC 4 FSISEND

FSIFSID 4 The FSS/FSA IDs

SEND Function Dependent Section

SNDTYPE 1 SNDTYTDS

SNDRSPTR 4 The address of the response area

FSILEN
The length of the entire SEND parameter list. The SEND parameter list consists
of both the IAZFSIP common header section and the SEND function dependent
section.

FSIFUNC
The SEND function ID number. The FSA assigns the symbolic equate value
FSISEND to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

SNDTYPE
The FSA uses this flag byte to indicate to JES the type of information being
sent. For this issuance of the SEND request, the FSA is expected to set the
following indicator:

SNDTYTDS B‘01000000’
The FSA is satisfying JES’s request for notification (GDSTRKDS) when the
data set reaches the OOP.

SNDRSPTR
The address of the FSA-provided response area.

PARM HEADER
(IAZFSIP)

SEND HEADER
(SNDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 22. FSIREQ Parameter Lists for Send Processing

GETDS

68 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Issuing the FSIREQ SEND Request
When the FSA has completed initializing the response area and SEND parameter
list, it issues the FSIREQ macro to invoke the FSI SEND communication service.
The format of this macro call is:
FSIREQ REQUEST=FSISEND,TARGET=JES,PARM=SEND
parm-list-addr,FSID=value-addr

Note: See “Chapter 4. The FSIREQ Macro” on page 13 for a complete description
of each operand on this macro and the defaults that may be taken.

On return from SEND processing, register 15 contains either a zero return code
indicating success or a non-zero return code indicating an error occurred during
processing.

Getting SYSOUT Records from an Acquired Data Set
Once an FSA has obtained a data set with a GETDS request, it can use the data
set identifier (GDSDSID) returned to invoke the FSI GETREC service. The FSI
GETREC service acquires one or more logical records for the specified data set
and returns a pointer to the variable length index (IDX) to the FSA.

JES CODE FSA CODE

Works is available
Select WORK
Fill WORK REQUEST

Select WORK
Tell FSA work exists
FSIREQ REQUEST=FSIPOST

Process RELDS
Closes the data set and deallocates
its storage

No work found
Return from GETDS
Indicating no work available

Fill WORK REQUEST

Build INDEX and Parameter list

Process FREEREC

PROCESS RECORD

Next GETDS

Issue GETDS Request
FSIREQ REQUEST=FSIGDS

Respond to Post
FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST
FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request
FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST
FSIREQ REQUEST=FSIGREC

WAIT

WAIT

WAIT

WAIT

1

2

2c

2d
3

5

7

4

6

8

2a

2b

Figure 23. An Overview of Data Set Processing

GETDS

Chapter 9. Issuing Data Requests to JES 69

The index (mapped by IAZIDX) contains one or more entries. Each entry normally
represents one logical record. Entries may correspond to a partial record if it is a
spanned record. Each entry contains a pointer to the data portion of the record. The
FSA is responsible for accessing each of the individual record entries contained in
the index. The number of entries in the table is provided in the IDXNUM field of the
fixed index header (IAZIDX).

The storage associated with the logical records is assigned to the FSA and may not
be reused by JES until the FSA issues a FREEREC request for the index
representing those records.

The FSI GETREC service supports both sequential and specific record retrieval.
The FSA can specify the type of record retrieval desired in the GETREC parameter
list. The FSA may request JES to begin record access at the beginning of the data
set, at the next sequential record, or at a specific record (if the record id is known to
the FSA). If this is the first GETREC request for a data set, JES automatically
begins accessing records at the beginning of the data set, unless the FSA
specifically indicates otherwise in the GETREC parameter list. Specific record
retrieval is described in more detail below.

The FSI GETREC service supports multiple GETREC requests against a single
data set without intervening FREEREC requests. This allows the FSA to perform
“read-ahead” processing and therefore, obtain adequate despooling performance.
The FSA, however, must be sensitive regarding storage limitations. When the FSA

INDEX HEADER
(IAZIDX)

RECORD ENTRY 1
(IDXENTRY)

RECORD ENTRY 2
(IDXENTRY)

DATA PORTION
OF RECORD 1

DATA PORTION
OF RECORD 2

DATA PORTION
OF RECORD N

RECORD ENTRY N
(IDXENTRY)

IDXRADR

IDXRADR

IDXRADR

•
•
•

Figure 24. The Index (Mapped by IAZIDX) Returned From the GETREC Request

GETREC

70 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

finishes processing the records pointed to by an index, it should issue a FREEREC
request for that index. If the FSA issues too many GETREC requests without
issuing FREEREC requests, GETREC processing may eventually not be able to
continue because of a buffer shortage. See “Releasing a SYSOUT Record” on
page 76 for more information about the FSI FREEREC service.

FSI GETREC processing is asynchronous. JES does not require the FSA to finish
getting all the records from one data set before it will accept another GETDS
request by the FSA.

FSI GETREC Service Restriction: GETREC requests for a data set’s records must
be made from the same task that issued the GETDS request for that data set.

Specific Record Retrieval
The FSA may desire specific record retrieval for several reasons. Two examples
are:

v After processing a SYNCH order, the FSA may need to reaccess data records
from the resultant point of synchronization or repositioning. If the FSA desires to
support repositioning, the FSA is responsible for collecting the required
information.

Note: The GETREC service also allows the FSA to re-access data records from
the beginning of the data set.

v If the data set was previously interrupted, the FSA can restart the processing of
the data set at the point indicated by the last data set checkpoint.

If the FSA desires specific record retrieval, it must indicate so in the GETREC
parameter list and it must supply the identifier of the record at which JES is to begin
record access. If this is not the first GETREC request for this data set, the FSA may
use the record identifier that is incorporated into each index entry (IDXRECID)
returned from a previous GETREC request. If this is the first GETREC request for
this data set, and valid checkpoint information exists, the FSA may use the record
identifier that is included in the checkpoint information (the CHKRBA field of the
IAZCHK record).

Initializing the GETREC Parameter List
The FSIREQ GETREC parameter list is used by both the FSA and JES to pass
information. The FSA must initialize certain fields of the FSIREQ GETREC
parameter list for each issuance of the GETREC request. The following table lists
the required fields, the offsets and lengths of these fields, and the values that the
FSA must assign. Detailed descriptions of the value assignments follow this table.

Note: The GLRECID field requires initialization only if the GETREC request is for
specific record retrieval.

Field Name Length
(bytes)

Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of GETREC parameter list

FSIFUNC 4 FSIGREC

FSIFSID 4 The FSS/FSA IDs

GETREC Function Dependent Section

GETREC

Chapter 9. Issuing Data Requests to JES 71

Field Name Length
(bytes)

Value to be assigned

GLRFLGR1 1 The type of record request

GLRECID 8 The record identifier

GLRDSID 12 The data set identifier

FSILEN
The length of the entire GETREC parameter list. The GETREC parameter list
consists of both the IAZFSIP common header section and the GETREC
function dependent section.

FSIFUNC
The GETREC function ID number. The FSA assigns the symbolic equate value
FSIGREC to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

GLRFLGR1
The FSA uses this flag byte to specify the type of record request. The FSA may
set one of the following indicators:

GLRREC1 B‘10000000’
The FSA requests record access to begin at the first record in the data set.

GLRRECN B‘01000000’
The FSA requests record access to begin at the next sequential record in
the data set.

GLRRECS B‘00100000’
The FSA requests record access to begin at the record specified in the
GLRECID field.

GLRECID
The identifier of a specific record. This identifier is the JES equivalent of a
relative block address (RBA). It was passed to the FSA either in the checkpoint
area returned by a previous GETDS request or in an index returned from a
previous GETREC request for this data set. The FSA needs to initialize this field
only if it has set the GLRRECS indicator indicating JES is to begin record
access at this record.

GLRDSID
The data set identifier.

Issuing the FSIREQ GETREC Request
When the FSA has completed initializing the GETREC parameter list, it issues the
FSIREQ macro to invoke the FSI GETREC service. The format of this macro call is:
FSIREQ REQUEST=FSIGREC,TARGET=JES,PARM=GETREC
parm-list-addr,FSID=value-addr

See “Chapter 4. The FSIREQ Macro” on page 13 for a complete description of each
operand on this macro and the defaults that may be taken.

GETREC

72 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

JES GETREC Processing
The JES-supplied GETREC routine in the FSS address space receives control
when the FSA issues the FSIREQ GETREC macro. The basic function of GETREC
processing is to provide the FSA access to data records from a data set previously
assigned to the FSA.

The GETREC service uses the data set identifier passed in the GETREC parameter
list to locate the correct data records. It then determines the type of record retrieval
requested (sequential or specific) and uses this information to begin assigning
records to the FSA. If no errors occur during processing, the GETREC service fills
in an index with pointers to the record(s) assigned and record status information. It
then returns control to the FSA with a zero return code in register 15.

If an error occurs during GETREC processing, the GETREC service does the
following:
v Indicates the error condition in the GETREC parameter list
v Indicates in the GETREC parameter list that no index was returned

If the error is the result of an invalid parameter list passed by the FSA, the
GETREC service sets a non-zero return code in register 15 and then returns
control to the FSA. The FSA should correct the error in the GETREC parameter list
and then reissue the GETREC request. For other types of errors, the GETREC
service sets a zero return code in register 15, indicating that processing can
continue. See the specific error indicators in the GETREC parameter list for more
information.

Information Returned in GETREC Parameter List
On return from successful GETREC processing, the GETREC parameter list
contains the information listed below. If GETREC processing was not successful,
the GLRINDX field in the GETREC parameter list does not contain a pointer to an
index.

The following figure shows the connection between the different sections of the
FSIREQ parameter list for GETREC processing.

GETREC

Chapter 9. Issuing Data Requests to JES 73

Field Name Length
(bytes)

Value assigned

Common Parameter Header Section

FSILEN * 4 Length of GETREC parameter list

FSIFUNC * 4 FSIGREC

FSIFSID * 4 The FSS/FSA IDs

GETREC Function Dependent Section

GLRFLGR1 * 1 The type of record request

GLRFLGS1 1 GETREC processing status information

GLRINDX 4 A pointer to the index returned

GLRECID * 8 The spool record ID

GLRDSID * 12 The data set identifier

The fields with an asterisk (*) contain values set by the FSA when it issued the
GETREC request. The GLRECID field may or may not be set depending on
whether the request was for specific record retrieval. The fields that JES set during
GETREC processing are described in detail below:

GLRFLGS1
This flag byte contains GETREC processing status information. The following
indicators may be set:

GLREOF B‘10000000’
JES has reached the end of file (EOF) for the data set. If JES reaches the
end of file without encountering any additional records for the GETREC
request, JES does not return an index, and sets the GLRNOI indicator.

PARM HEADER
(IAZFSIP)

GETREC PARM
(GLRPARM)
(RETURNED)

INDEX HEADER
(IAZIDX)

RECORD ENTRY N
(IDXENTRY)

RECORD ENTRY 1
(IDXENTRY)

RECORD ENTRY 2
(IDXENTRY)

•
•
•

Figure 25. FSIREQ Parameter Lists for GETREC Processing

GETREC

74 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

GLRNBA B‘01000000’
No buffers are available to satisfy the GETREC request. This condition may
occur when the FSA makes several GETREC requests without subsequent
FREEREC requests. The FSA can recover from this error by issuing
FREEREC requests to release the storage resources. The FSA can then
retry the GETREC request.

GLRIPL B‘00100000’
The parameter list passed by the FSA was invalid. Possible reasons for this
error are: 1) the FSA specified an invalid type of record request
(GLRFLGR1), 2) the FSA specified an invalid record ID (GLRECID) and
specified specific record retrieval, 3) the FSA specified an invalid data set
identifier (GLRDSID).

GLRIOE B‘00010000’
The GETREC service detected a permanent hardware I/O error on the JES
spool device during processing of the current data set.

The FSA should not attempt further processing of the data set. It should
issue a RELDS request for the data set indicating in the RELDS parameter
list that data set processing is complete. The FSA can then continue
processing the next data set.

GLRLGE B‘00001000’
Either a logic error (for example, an incorrect spool record format) or an
ABEND has occurred during processing of the current data set. This is
probably a JES error for which the JES has already provided the diagnostic
data (for example, trace and a dump).

The FSA should not attempt further processing of the data set. It should
issue a RELDS request for the data set indicating in the RELDS parameter
list that data set processing is complete. The FSA can then continue
processing the next data set.

GLRNOI B‘00000100’
JES did not return an index. This indicator is always set when one of the
previous indicators (except the GLREOF indicator) is set. If the GLREOF
indicator is set, this indicator may or may not be set.

GLRINDX
This field contains a pointer to the index returned by GETREC processing. If an
index was not returned, this field will be zero.

Information Contained in Index
The GLRINDX field points to the index returned from GETREC processing. The
index contains a header section and an index entry area. The index entry area is of
variable length depending on how many records were assigned to the FSA. The
fields of the index are described below. Only one index entry is shown.

Field Name Length
(bytes)

Value assigned

Fixed Header of Index Table

IDXID 4 ‘IDX ’ (ID of Index table)

IDXNUM 2 Number of entries in the table. Each entry
refers to a specific logical record.

IDXTOK 2 A JES-supplied token that JES uses for
validation purposes

RESERVED 4

GETREC

Chapter 9. Issuing Data Requests to JES 75

Field Name Length
(bytes)

Value assigned

Index Entry Area

IDXENTRL 2 Length of the index entry

IDXRECL 2 Length of the data portion of the logical
record

IDXFLAG1 1 Status information for the record

IDXRADR 4 Address of the data portion of the logical
record

IDXRECID 8 The identifier of this logical record

IDXFLAG1
This flag byte contains status information for the logical record identified by
IDXRECID. The following indicators may be set in this flag byte:

IDXDSR B‘10000000’
The record contains stream mode data.

IDXLMR B‘01000000’
The record contains line mode data.

IDXANSI B‘00100000’
The record contains ANSI control characters.

IDXMACH B‘00010000’
The record contains machine control characters.

IDXSRS B‘00001000’
This entry is actually the start of split record.

IDXSRM B‘00000100’
This entry is the middle of a split record.

IDXSRE B‘00000010’
This entry is the end of a split record.

IDXOPJ B‘00000001’
The OPTCODE=J was used for the record.

IDXRECID
The identifier of this logical record. The FSA may use this identifier to request
JES to begin access to a data set at this logical record by specifying this value
on a GETREC request and specifying this value as the GLRECID.

Releasing a SYSOUT Record
An FSA invokes the FSI FREEREC service to release logical records previously
obtained with a GETREC request. The FSA provides a pointer to an index and JES
releases the storage associated with the record index entries. Releasing logical
records allows JES to reuse the associated storage.

GETREC

76 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

FSI FREEREC processing is asynchronous. JES does not require the FSA to finish
releasing all the records from one data set before it will accept another GETDS
request by the FSA.

FSI FREEREC Service Restriction: FREEREC requests for a data set’s records
must be made from the same task that issued the GETDS request for that data set.

Initializing the FREEREC Parameter List
For each FREEREC request, the FSA must initialize certain fields of the FSIREQ
FREEREC parameter list.

The following figure shows the connection between the different sections of the
FSIREQ parameter list for FREEREC processing.

JES CODE FSA CODE

Works is available
Select WORK
Fill WORK REQUEST

Select WORK
Tell FSA work exists
FSIREQ REQUEST=FSIPOST

Process RELDS
Closes the data set and deallocates
its storage

No work found
Return from GETDS
Indicating no work available

Fill WORK REQUEST

Build INDEX and Parameter list

Process FREEREC

PROCESS RECORD

Next GETDS

Issue GETDS Request
FSIREQ REQUEST=FSIGDS

Respond to Post
FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST
FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request
FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST
FSIREQ REQUEST=FSIGREC

WAIT

WAIT

WAIT

WAIT

1

2

2c

2d
3

5

7

4

6

8

2a

2b

Figure 26. An Overview of Data Set Processing

FREEREC

Chapter 9. Issuing Data Requests to JES 77

The following table lists the required fields, the offsets and lengths of these fields,
and the values that the FSA must assign. Detailed descriptions of the value
assignments follow this table.

Field Name Length
(bytes)

Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of FREEREC parameter list

FSIFUNC 4 FSIFREC

FSIFSID 4 The FSS/FSA IDs

FREEREC Function Dependent Section

FLRINDX 4 The pointer to the index to be freed.

FLRDSID 12 The data set identifier

FSILEN
The length of the entire FREEREC parameter list. The FREEREC parameter list
consists of both the IAZFSIP common header section and the FREEREC
function dependent section.

FSIFUNC
The FREEREC function ID number. The FSA assigns the symbolic equate value
FSIFREC to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

FLRINDX
The pointer to the index to be freed. JES returned this pointer on a previous
GETREC request in the GLRINDX field of the GETREC parameter list.

PARM HEADER
(IAZFSIP)

FREEREC PARM
(FLRPARM)

INDEX HEADER
(IAZIDX)

RECORD ENTRY N
(IDXENTRY)

RECORD ENTRY 1
(IDXENTRY)

RECORD ENTRY 2
(IDXENTRY)

•
•
•

Figure 27. FSIREQ Parameter Lists for FREEREC Processing

FREEREC

78 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

FLRDSID
The identifier of the data set to which the record(s) belong. This identifier was
returned from GETDS processing in the GDSDSID field in the GETDS
parameter list.

Issuing the FSIREQ FREEREC Request
When the FSA has completed initializing the FREEREC parameter list, it issues the
FSIREQ macro to invoke the FSI FREEREC service. The format of this macro call
is:
FSIREQ REQUEST=FSIFREC,TARGET=JES,PARM=FREEREC
parm-list-addr,FSID=value-addr

See “Chapter 4. The FSIREQ Macro” on page 13 for a complete description of each
operand on this macro and the defaults that may be taken.

JES FREEREC Processing
The JES-supplied FREEREC routine receives control when the FSA issues the
FSIREQ FREEREC macro. The FREEREC service uses the data set identifier and
the index pointer passed in the FREEREC parameter list to de-allocate the storage
areas associated with the data set’s records referenced by the index. The storage is
then available for subsequent GETREC processing.

Status of Request Returned by JES
If no errors occur during FREEREC processing, JES returns control to the FSA with
a zero return code in register 15. If an error does occur that prevents FREEREC
processing from continuing, JES indicates this to the FSA by passing a non-zero
return code in register 15. The error can be one of the following:
v An invalid parameter list
v The IDXTOK is invalid
v The IDX has already been freed
v The data set has already been released (RELDS)

The FSA should correct the problem and reissue the request.

Releasing a SYSOUT Data Set
The FSA invokes the FSI RELDS service to:
v Return a data set that was previously obtained with a GETDS request to JES
v Notify JES of the data set’s processing status.

FREEREC

Chapter 9. Issuing Data Requests to JES 79

The FSI RELDS service is functionally equivalent to closing and de-allocating the
data set. The storage associated with the data set is made available to JES for
reuse. If the FSA indicates that valid checkpoint information exists for the data set,
JES writes the final checkpoint record to spool. If the FSA issues a RELDS request
for a data set before it releases all of its records (using the FREEREC request), the
FSI RELDS service also frees the storage for all outstanding records for that data
set.

Data Set Processing Status
In the RELDS parameter list, the FSA indicates the data set’s processing status, as
follows:
v The data set has been completely processed.
v The data set has not been completely processed. Its checkpoint information is:

– valid
– invalid

v The data set is unprintable.

The descriptions of the specific indicators that may be set in the status flag byte
(RDSFLGS1) explain how JES reacts to each processing status.

JES CODE FSA CODE

Works is available
Select WORK
Fill WORK REQUEST

Select WORK
Tell FSA work exists
FSIREQ REQUEST=FSIPOST

Process RELDS
Closes the data set and deallocates
its storage

No work found
Return from GETDS
Indicating no work available

Fill WORK REQUEST

Build INDEX and Parameter list

Process FREEREC

PROCESS RECORD

Next GETDS

Issue GETDS Request
FSIREQ REQUEST=FSIGDS

Respond to Post
FSIREQ REQUEST=FSIGDS

ISSUE FREEREC REQUEST
FSIREQ REQUEST=FSIFREC

ISSUE RELDS Request
FSIREQ REQUEST=RELDS

ISSUE GETREC REQUEST
FSIREQ REQUEST=FSIGREC

WAIT

WAIT

WAIT

WAIT

1

2

2c

2d
3

5

7

4

6

8

2a

2b

Figure 28. An Overview of Data Set Processing

RELDS

80 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Initializing the RELDS Parameter List
The FSA must initialize specific fields of the FSIREQ RELDS parameter list for each
issuance of the RELDS request.

The following figure shows the connection between the different sections of the
FSIREQ parameter list for RELDS processing.

The following table lists the required fields, the offsets and lengths of these fields,
and the values that the FSA must assign. Detailed descriptions of the value
assignments follow this table.

Field Name Length
(bytes)

Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of RELDS parameter list

FSIFUNC 4 FSIRDS

FSIFSID 4 The FSS/FSA IDs

RELDS Function Dependent Section

RDSFLGS1 1 The processing status of the data set to be
released

RDSDSID 12 The data set identifier

RDSMIDSE 8 Message ID indicating data set error

FSILEN
The length of the entire RELDS parameter list. The RELDS parameter list
consists of both the IAZFSIP common header section and the RELDS function
dependent section.

FSIFUNC
The RELDS function ID number. The FSA assigns the symbolic equate value
FSIRDS to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

RDSFLGS1
This flag byte indicates the processing status of the data set to be released.
The FSA may set the following indicators:

RDSDONE B‘10000000’
The FSA has completely processed the data set. This indicator indicates
that the entire data set has passed the data integrity point (DIP) of the
device and JES may purge the data set from spool.

RDSINC B‘01000000’
The FSA has not completely processed the data set. Processing was
interrupted because either the FSA processed a SYNCH order that

PARM HEADER
(IAZFSIP)

RELDS HEADER
(RDSPARM)

Figure 29. FSIREQ Parameter Lists for RELDS Processing

RELDS

Chapter 9. Issuing Data Requests to JES 81

specified an interrupt action or an error occurred on the device. This
indicator causes JES to re-queue the data set for processing.

RDSCKPI B‘00100000’
The checkpoint information for the data set is invalid and should not be
used when the data set is again selected for processing. The data set
should be printed from the beginning. JES ignores this indicator if the FSA
also sets the RDSDONE or RDSUNPR indicator.

RDSUNPR B‘00010000’
The data set is unprintable. During processing, the FSA detected an error in
the data set that prevents it from completely printing the data set. This
indicator causes JES to re-queue the data set for processing, but mark it as
held. This prevents the data set from being selected until the error is
corrected and the data set is released from hold.

RDSDSID
The identifier of the data set that is to be released. This identifier was
previously returned by JES during GETDS processing.

RDSMIDSE
If FSA has encountered an error when processing the data set, this field
contains a message ID that describes the error. See the FSA message manual
for details.

Issuing the FSIREQ RELDS Request
When the FSA has completed initializing the RELDS parameter list, it issues the
FSIREQ macro to invoke the FSI RELDS service. The format of this macro call is:
FSIREQ REQUEST=FSIRDS,TARGET=JES,PARM=RELDS
parm-list-addr,FSID=value-addr

See “Chapter 4. The FSIREQ Macro” on page 13 for a complete description of each
operand on this macro and the defaults that may be taken.

JES RELDS Processing
The JES-supplied RELDS routine receives control when the FSA issues the
FSIREQ RELDS request. This routine closes the data set and de-allocates the
storage resources associated with it. The RELDS routine uses the data set
processing status passed by the FSA to determine what additional actions are
required by JES. When the data set is processed, JES invokes the Scheduler JCL
Facility (SJF) to release the SWBs associated with the data set passed from the
GETDS request. This data set is no longer available for use by the FSA. If the data
set was incompletely processed, JES updates the checkpoint data according to the
completion status provided by the FSA and writes the final checkpoint record to
spool.

Status of Request Returned by JES
If no errors occur during RELDS processing, JES returns control to the FSA with a
zero return code in register 15. If an error does occur that prevents RELDS
processing from continuing, JES passes a non-zero return code in register 15 to the
FSA.

SMF Record Writing
After the FSA issues a RELDS request for a data set, it is expected to write an
SMF type 6 record for that data set. The JSPA provided by JES at GETDS
processing contains SMF record information. The FSA uses this information and its
own information to generate the SMF record for the assigned data set. See

RELDS

82 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

“Information Contained in the JSPA” on page 58 for more information about the
JSPA. Refer to z/OS MVS System Management Facilities (SMF) for more
information about type 6 SMF records.

Requesting a Checkpoint of Processing
The FSA invokes the FSI CHKPT service to request JES to record checkpoint data
for a spool data set currently being processed by the FSA. The FSA passes the
address of a checkpoint record containing data set information to JES and JES
writes the checkpoint record to spool. The FSA is responsible for ensuring output
checkpoints are taken at appropriate points in processing. It needs to be able to
handle checkpoint intervals specified on a data set basis using SWB information. If
a checkpoint interval was not specified in the data set’s SWBs, the FSA uses the
default passed by JES in the START FSA order parameter list.

Checkpointing is not a mandatory function that must be provided by the FSA. If
your FSA will only process small data sets (1 or 2 pages), the FSA can decide not
to support checkpointing.

Note: Even if your FSA does not support checkpointing, it is still responsible for
providing the checkpoint data area and checkpoint area length in the GETDS
parameter list.

Purpose of the FSI CHKPT Service
The FSI CHKPT service supports data set checkpointing for restart. The checkpoint
information recorded during FSI CHKPT processing may later be used by the FSA
to restart the printing of a previously interrupted data set from the point indicated by
the data set’s last checkpoint. For example, if the processing of a data set is
interrupted due to a SYNCH order, the FSA returns the data set to JES (using the
RELDS request) with an incomplete processing status. If the FSA also indicates in
the RELDS parameter list that valid checkpoint information exists for the data set,
JES saves the information for future processing. If on a future GETDS request, this
same data set is again assigned to an FSA, JES will fill in the checkpoint area
provided by the FSA. JES will also indicate in the GETDS parameter list that valid
checkpoint information exists for the data set. The FSA then uses this information to
restart the printing of the data set from the point indicated by the last checkpoint.

Preparing for Checkpointing
When an FSA determines an output checkpoint needs to be taken for a data set, it
must:

1. Establish and initialize a checkpoint area. This checkpoint area must begin with
the FSI checkpoint record (IAZCHK). If the FSA wants to provide additional
device dependent checkpoint information, that information immediately follows
IAZCHK.

2. Initialize the FSIREQ CHKPT parameter list.

3. Issue the FSIREQ CHKPT request to invoke the FSI CHKPT service.

Initializing the FSI Checkpoint Record
The following table lists the fields contained in the IAZCHK checkpoint record. The
CHKID field is the only field that JES requires the FSA to initialize. The FSA may
initialize the remaining fields on a discretionary basis.

Note: JES uses the CHKJESWK field. The FSA does not initialize this area. It is
shown in the table only to provide a complete record format.

RELDS

Chapter 9. Issuing Data Requests to JES 83

Field Name Length
(bytes)

Assigned Value

CHKID 4 ‘CHK’ (FSI Checkpoint record identifier)

CHKLNGTH 2 Length of FSI checkpoint record

CHKJESWK 64 JES dependent checkpoint information for
the data set. The FSA does not use this
area.

CHKRBA 8 The identifier of the record currently being
processed

CHKDEV 4 The device type

CHKMOD 4 The model number of the device

CHKCOPY 4 The number of copies that have been
printed

CHKTRNC 4 The transmission count

CHKREC 4 The logical record count

CHKPAGE 4 The physical page count

CHKPROD 8 The product that created the checkpoint
record

CHKVER 4 The version of the product

CHKRELS 4 The release of the product

CHKMODF 4 The modification level of the product

CHKSERV 4 The service level of the product

Initializing the CHKPT Parameter List
The FSA must initialize certain fields of the FSIREQ CHKPT parameter list for each
CHKPT request.

The following figure shows the connection between the different sections of the
FSIREQ parameter list for checkpoint processing.

The following table lists the required fields, the offsets and lengths of these fields,
and the values that the FSA must assign. Detailed descriptions of the value
assignments follow this table.

Field Name Length
(bytes)

Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of CHKPT parameter list

FSIFUNC 4 FSICKPT

FSIFSID 4 The FSS/FSA IDs

PARM HEADER
(IAZFSIP)

CHECK POINT PARM
(CHKPARM)

CHECK POINT AREA
(IAZCHK)

Figure 30. FSIREQ Parameter Lists for CHKPT Processing

CHKPT

84 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Field Name Length
(bytes)

Value to be assigned

CHKPT Function Dependent Section

CHKADR 4 The pointer to the FSA-supplied checkpoint
area

CHKFLGR1 1 CHKFCWRT

CHKDSID 12 The data set identifier

FSILEN
The length of the entire CHKPT parameter list. The CHKPT parameter list
consists of both the IAZFSIP common header section and the CHKPT function
dependent section.

FSIFUNC
The CHKPT function ID number. The FSA assigns the symbolic equate value
FSICKPT to this field.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

CHKADR
The pointer to the FSA checkpoint area which contains the initialized FSI
checkpoint record (IAZCHK) and optionally, any device dependent information
to be checkpointed. On return from CHKPT processing, the FSA may reuse this
area.

CHKFLGR1
This flag byte indicates the type of checkpoint request. The FSA may set the
following indicator:

CHKFCWRT B‘10000000’
The FSA requires a forced write of the checkpoint record. During checkpoint
processing, if I/O is not yet complete for the checkpoint buffer and
CHKFCWRT is set, JES waits for I/O completion and then writes the record
to spool before returning to the FSA. If CHKFCWRT is not set, JES returns
to the FSA without waiting for I/O completion.

For optimum performance, the FSA should set this indicator only for a
checkpoint request made immediately prior to releasing the data set with a
RELDS request.

CHKDSID
The identifier of the data set that is being checkpointed. This identifier was
returned to the FSA on a previous GETDS request.

Issuing the FSIREQ CHKPT Request
When the FSA has completed initializing the CHKPT parameter list, it issues the
FSIREQ macro to invoke the FSI CHKPT service. The format of this macro call is:
FSIREQ REQUEST=FSICKPT,TARGET=JES,PARM=CHKPT parm-list-addr,
FSID=value-addr

See “Chapter 4. The FSIREQ Macro” on page 13 for a complete description of each
operand on this macro and the defaults that may be taken.

JES CHKPT Processing
The JES-supplied CHKPT routine receives control when the FSA issues the
FSIREQ CHKPT request. The basic function of the CHKPT service is to write the

CHKPT

Chapter 9. Issuing Data Requests to JES 85

checkpoint records to the JES spool data set. JES writes the record directly from
the FSS address space. The CHKPT service does not require JES address space
functions.

Before writing the checkpoint record to spool, JES copies it to its own buffer. If I/O
is not yet complete from a previous checkpoint write and a forced write was not
specified, JES sets a zero return code in register 15 and returns control to the FSA
without the checkpointing of the record completed. If a previous checkpoint I/O is
not outstanding and forced write was not specified then the checkpoint write is
initiated but control will return to the FSA before the write completes.

If a forced write was specified and a previous checkpoint I/O is outstanding, JES
will wait for the outstanding I/O to complete, issue a write for the current checkpoint
and wait for that I/O to complete before returning control to the FSA. If a previous
I/O is not outstanding, JES initiates a write for the current checkpoint and waits for
it to complete before returning control to the FSA.

If, during processing, JES detects an error other than a bad checkpoint record (for
example, invalid parameter list length), it sets a non-zero return code in register 15
and returns control to the FSA.

If JES detects a checkpoint write I/O error, it sets the CHKFCERR flag bit on in the
CHKPT parameter list indicating a permanent I/O error and then returns control to
the FSA with a non-zero return code in register 15.

Bad Checkpoint Record Detected by JES
If JES determines that the checkpoint record is bad, it initializes the CHKFLGS1
flag byte in the CHKPT parameter list before returning to the FSA.

CHKFLGS1 1 CHKFCERR

CHKFCERR B‘10000000’
A permanent I/O or processing error occurred while JES was attempting a write
of the checkpoint record. JES ignores the checkpoint request and stops
checkpointing the current data set. The FSA should retry the request (resume
checkpointing) for the next data set.

CHKPT

86 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 10. Responding to Device Orders From JES

When JES determines that an operator command requires participation of an FSA,
JES converts the command into an FSI order. JES then issues an FSIREQ ORDER
request to the FSA’s FSI ORDER routine. The FSA supplied the address of this
routine to JES at FSA CONNECT time in the CDFAD field of the CONNECT
parameter list.

When the FSI ORDER routine receives the order, it is responsible for determining
the type of order issued and then either posting the appropriate FSA task to
process the order or processing the order directly. When order processing is
complete, the FSA responds to JES with the required data. JES will not send
another order to the FSA until it receives a response for the outstanding order.

This chapter describes the processing for orders that:

v request a change in device or data set characteristics

v affect the flow of data through the device

v request information about a data set currently being processed by an FSA
device.

Notes:

1. Refer to “Chapter 5. FSI Communication” on page 17 for restrictions on
responding to orders.

2. This chapter explains the tasks involved in processing orders, it does not
explain how the FSI order routine should be coded to satisfy those tasks.

The Query Order
JES issues a query order to an FSA’s FSI ORDER routine when an operator
command requests information concerning the data set at the operator observation
point (OOP). Because this order pertains to the data set at the OOP, JES requires
an immediate response. The query order is unique in that respect.

Note: For the 3800-3, the OOP is the point at which the output can be seen by the
operator.

The following topics describe the commands resulting in a query order and the FSA
processing required for this order.

Examples of JES Commands Resulting in a Query Order
Both JES2 and JES3 issue the query order for various commands. Examples of
these commands are:

v JES2
– $N PRTnnnn - repeat device.
– $DU,PRTnnnn - display device status.

v JES3
– *START,devname,P - display pending pages and records for current data set.

Processing the Query Order
When JES issues an FSI query order, it passes the address of the query order
parameter list in register 1 to the FSA’s FSI order routine. The query order
parameter list consists of the following sections:

© Copyright IBM Corp. 1988, 2001 87

v Common parameter header

v Common order header (which contains a pointer to the JES-provided order
response area (IAZRESPA))

Note: There is no variable order data section for the query order.

The following figure shows the connection between the different sections of the
FSIREQ parameter list for the QUERY order.

The table below lists the initialized fields, the lengths of these fields, and the values
that JES has assigned. Detailed descriptions of the value assignments follow this
table.

Field Name Length
(bytes)

Value assigned

Common Parameter Header Section

FSILEN 4 Length of query order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA IDs

Common Order Header Section

ORDFDATA 4 A value supplied to JES by the FSA as a
CONNECT parameter (CDFFDATA)

ORDRSPAD 4 Address of the order response area
(IAZRESPA)

ORDID 2 ORDQUERY

FSILEN
The length of the entire query order parameter list. The query order parameter
list consists of both the IAZFSIP common parameter header section and the
common order header section.

FSIFUNC
The ORDER function ID (FSIORDER).

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 31. FSIREQ Parameter Lists for the QUERY Order

QUERY

88 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

ORDFDATA
The address of a control block containing FSA-related information. The FSA
passed this address to JES in the CDFFDATA field of the CONNECT parameter
list. JES returns this value to the FSI’s ORDER routine so that it can start the
appropriate FSA.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The query order ID number. ORDQUERY is the symbolic equate.

The FSA’s FSI ORDER routine uses the ORDID value to determine that the JES
order requests a query action. The FSI ORDER routine is then responsible for
obtaining information about the data set currently at the OOP and immediately
returning that information to JES in the JES provided order response area
(IAZRESPA). If the FSI ORDER routine determines that no data set is currently
active at the OOP, it indicates this condition to JES in the order response area.
“Chapter 5. FSI Communication” on page 17 explains the IAZRESPA fields that the
FSA needs to initialize.

The query order information can be kept in a control block whose address JES
passes to the FSI order routine in the ORDFDATA field.

Note: Because the query order requires an immediate response, it is
recommended that the FSI ORDER routine process the order directly rather
than posting an FSA task to process the order.

The Set Order
JES issues a set order to an FSA’s FSI ORDER routine to set or change device
characteristics unrelated to data set processing specifications. JES specifically
issues the set order to set or change the non-process runout (NPRO) timer interval.
The non-process runout (NPRO) time interval is that time interval during which
output remains in the paper path but has not reached the stacker. After the NPRO
time interval has elapsed, the FSA directs the device to force the output to the
stacker. The new NPRO values goes into effect the next time the device goes idle.

The following topics describe the JES commands that result in a set order and the
FSA processing required for this order.

Examples of JES Commands Resulting in a Set Order
Examples of JES commands resulting in a set order are:

v JES2
– $T PRTnnnn,NPRO=nnnn

v JES3
– *S,devname,NPRO=nnnn
– *R,devname,NPRO=nnnn

Processing the Set Order
When JES issues an FSI set order, it passes the address of the set order
parameter list in register 1 to the FSA’s FSI order routine. The set order parameter
list consists of the following sections:

v Common parameter header

QUERY

Chapter 10. Responding to Device Orders From JES 89

v Common order header (which contains a pointer to the JES provided order
response area (IAZRESPA))

v set order dependent section.

The following figure shows the connection between the different sections of the
FSIREQ parameter list for SET order processing.

The table below lists the initialized fields, the lengths of these fields, and the values
that JES has assigned. Detailed descriptions of the value assignments follow this
table.

Field Name Length
(bytes)

Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of set order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA IDs

Common Order Header Section

ORDFDATA 4 A value supplied to JES by the FSS/FSA as
a CONNECT parameter (CDFFDATA)

ORDRSPAD 4 Address of the order response area
(IAZRESPA)

ORDID 2 ORDSET

Set Order dependent Section

ORDSTR1 1 Type of set order

ORDSTNI 4 The NPRO interval value (in seconds)

FSILEN
The length of the entire set order parameter list. The set order parameter list
consists of the IAZFSIP common parameter header section, the common order
header section, and the set order dependent section.

FSIFUNC
The ORDER function ID (FSIORDER).

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

SET
(ORDST)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 32. FSIREQ Parameter Lists for SET Order Processing

SET

90 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

ORDFDATA
The address of a control block containing FSA-related information. The FSA
passed this address to JES in the CDFFDATA field of the CONNECT parameter
list. JES returns this value to the FSA ORDER routine so that it can start the
appropriate FSA.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The set order ID number. ORDSET is the symbolic equate.

ORDSTR1
This flag byte indicates the set action to be performed by the FSA. JES sets
one of the following indicators:

ORDSTSN B‘10000000’
The FSA is to set the NPRO timer interval. The ORDSTNI field contains the
NPRO interval value.

ORDSTDN B‘01000000’
The FSA is to disable the NPRO timer interval.

ORDSTNI
The NPRO interval value, in seconds. If the set order requests the FSA to
disable the NPRO timer interval (ORDSTDN is set), this field is set to zero.

The FSA’s FSI ORDER routine uses the ORDID value to determine that the JES
order requests a set action. The FSI ORDER routine then either processes the set
order directly or posts an FSA task to process the order. If a response to the order
cannot be immediately provided to JES, the FSI ORDER routine sets the
ORDFLGS1 field in the common order header section equal to ORDARESP. This
notifies JES that the response to the order will be returned at a later time by means
of an FSIREQ SEND request.

When set order processing is complete, the FSA responds to JES indicating
whether the order was processed successfully. “Chapter 5. FSI Communication” on
page 17 explains how the FSA responds to JES.

The Synch Order
JES issues a synch order to an FSA’s FSI ORDER routine when an action needs to
be performed against the data set currently at the operator observation point
(OOP). The synch order requests that FSA processing be synchronized to the point
of actual printing.

The following topics describe the JES commands that result in a synch order and
the FSA processing required for this order.

Examples of JES Commands Resulting in a Synch Order
Examples of JES commands resulting in a synch order are:

v JES2
– $B PRTnnnn,m - backward space
– $F PRTnnnn,m - forward space
– $Z PRTnnnn - halt device.

SET

Chapter 10. Responding to Device Orders From JES 91

v JES3
– *RESTART,devname - restart data set at beginning
– *CANCEL,devname - terminate data set
– *START,devname,CP=+2, - increment copy count by 2 for current data set.

Processing the Synch Order
When JES issues an FSI synch order, it passes the address of the synch order
parameter list in register 1 to the FSA’s FSI order routine. The synch order
parameter list consists of the following sections:
v Common parameter header
v Common order header
v Synch order dependent section.

The following figure shows the connection between the different sections of the
FSIREQ parameter list for SYNCH order processing.

The table below lists the initialized fields, the offsets and lengths of these fields, and
the values that JES has assigned. Detailed descriptions of the value assignments
follow this table.

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

SYNCH
(ORDSY)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 33. FSIREQ Parameter Lists for SYNCH Order Processing

SYNCH

92 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Field Name Length
(bytes)

Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of synch order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA IDs

Common Order Header Section

ORDFDATA 4 A value supplied to JES by the FSA as a
CONNECT parameter (CDFFDATA)

ORDRSPAD 4 Address of the order response area
(IAZRESPA)

ORDID 2 ORDSYNC

Synch Order Dependent Section

ORDSYR1 1 Synch action to be performed

ORDSYR2 1 Reposition action to be performed

ORDSYR3 1 Device update action to be performed

ORDSYR4 1 Data set update action to be performed

ORDSYR5 1 Interrupt action to be performed

ORDSYR6 1 Miscellaneous action to be performed

ORDSYNP 4 Number of pages to reposition

ORDSYKI 4 Checkpoint interval (seconds or pages)

ORDSYCP 2 Copy count value

ORDSYMSG 120 Message text for users output

FSILEN
The length of the entire synch order parameter list. The synch order parameter
list consists of the IAZFSIP common parameter header section, the common
order header section, and the synch order dependent section.

Note: If a pointer to the set order parameter list is provided in the synch order
dependent section, the length of the set order parameter list is not
included in the FSILEN value.

FSIFUNC
The ORDER function ID number. FSIORDER is the symbolic equate.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

ORDFDATA
The address of a control block containing FSA related information. The FSA
passed this address to JES in the CDFFDATA field of the CONNECT parameter
list. JES returns this value to the FSA ORDER routine so that it can start the
appropriate FSA.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The synch order ID number. ORDSYNC is the symbolic equate.

SYNCH

Chapter 10. Responding to Device Orders From JES 93

ORDSYR1
This flag byte indicates the type of synch action that the FSA must perform. If it
equals zero and the device is a buffered device, the FSA is to release all the
data sets in its buffer. If it equals zero and the device is not a buffered device,
the FSA is to continue processing. One of the following indicators may be set:

ORDSYBCP B‘10000000’
The FSA is to synchronize the data set to the previous checkpoint.

ORDSYFCP B‘01000000’
The FSA is to synchronize the data set to the next checkpoint.

ORDSYBTM B‘00100000’
The FSA is to synchronize the data set to the beginning of the current
transmission.

ORDSYETM B‘00010000’
The FSA is to synchronize the data set to the end of the current
transmission.

ORDSYBDS B‘00001000’
The FSA is to synchronize the data set to the beginning of the data set.

ORDSYEDS B‘00000100’
The FSA is to synchronize the data set to the end of the data set.

ORDSYR2
This flag byte indicates the type of reposition action that the FSA must perform.
One of the following indicators may be set:

ORDSYRI B‘10000000’
The FSA is to increment the page position.

ORDSYRD B‘01000000’
The FSA is to decrement the page position.

ORDSYNR B‘00100000’
The FSA is not to reposition past the end of the data set at the OOP.

If the reposition request causes the FSA to go beyond the end of the data
set, it must:

1. Stop the reposition.

2. Respond to the SYNCH order with the RESP2EOD bit on in the order
response area. “Chapter 5. FSI Communication” on page 17 provides
information about responding to JES.

3. Wait for another SYNCH order from JES. If the ORDSYR1 field of the
SYNCH order parameter list is zero, the FSA should continue RELDS
processing for that data set. If the ORDSYR1 field is non-zero, the FSA
should process the SYNCH order normally.

ORDSYR3
This flag byte indicates the changes that the FSA is to make to the device
characteristics. One or more of the following indicators may be set:

ORDSYS1 B‘10000000’
The device is to single space the output.

ORDSYS2 B‘01000000’
The device is to double space the output.

ORDSYS3 B‘00100000’
The device is to triple space the output.

SYNCH

94 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

ORDSYSR B‘00010000’
The device is to use data set specified spacing.

ORDSYKP B‘00001000’
The FSA is to take checkpoints based on page count.

ORDSYKT B‘00000100’
Output checkpointing is to be based on time.

ORDSYKN B‘00000010’
The FSA is to disable checkpointing.

ORDSYRL B‘00000001’
The FSA is to reload electronic resources (for example, font libraries and
overlays) for the data set at the OOP.

ORDSYR4
This flag byte indicates the changes the FSA is to make to the characteristics of
the data set at the OOP. JES has rules that the maximum amount of copies that
can be printed of a dataset is 255. The FSA is responsible for checking that this
rule is enforced. One of the following indicators may be set:

ORDSYCI B‘10000000’
The FSA is to increment the copy count of the data set.

ORDSYCD B‘01000000’
The FSA is to decrement the copy count of the data set.

ORDSYCR B‘00100000’
The FSA is to replace the copy count for the data set.

ORDSYR5
This flag byte indicates the data set processing status that is to be assigned to
the data set currently at the OOP. The status depends on the type of
interruption performed. The following indicators may be set:

ORDSYDC B‘10000000’
The data set at the OOP is complete.

ORDSYDI B‘01000000’
The data set at the OOP is incomplete.

ORDSYVA B‘00100000’
The checkpoint data for the data set is valid.

ORDSYNV B‘00010000’
The checkpoint data for the data set is invalid.

ORDSYR6
This flag byte indicates miscellaneous actions that the FSA is to perform. The
following indicators may be set:

ORDSYMV B‘10000000’
The FSA is to print the ORDSYMSG message on the output of the data set
being synched.

ORDSYDS B‘01000000’
The FSA is to reject the synch order if a data set is not currently active at
the OOP.

The FSA must respond with the RESP2NDS bit on in the order response
area. “Chapter 5. FSI Communication” on page 17 provides information
about responding to JES.

SYNCH

Chapter 10. Responding to Device Orders From JES 95

ORDSYSP B‘00100000’
The FSA is to print a job trailer page for the data set at the OOP.

ORD6EOG B‘00010000’
End of output group.

ORD6CLP B‘00010000’
The FSA clears the pipeline when this flag is on.

The FSA issues an FSI RELDS request with the data set processing status
of RDSINC for all data sets up to but not including the one active at the
operator observation point (OOP).

ORDSYNP
The number of pages that the FSA is to reposition the data set. If this value is
zero, the FSA should ignore the reposition by pages request.

ORDSYKI
The checkpoint interval that is to be used for checkpointing. This interval
indicates a number of pages or seconds depending on whether the FSA is to
perform checkpointing based on page count or elapsed time.

ORDSYCP
The copy count value that is used by the FSA to change the copy count of the
data set.

ORDSYSMX
A pointer to the set order parameter list. If this pointer is present, the length of
the set order parameter list is not included in the FSILEN value.

ORDSYMSG
The message text that the FSA is to print on the user’s output.

Determining Synch Action to be Performed
The FSI ORDER routine uses the ORDID value to determine that the JES order
requires actions against the data set at the OOP. The synch order specifically
requests the FSA to perform one to four actions against the data set at the OOP.
These are:

1. To synchronize the data set to a specified point (indicated by the ORDSYR1 flag
byte)

2. To reposition the data set from the point of synchronization (indicated by the
ORDSYR2 flag byte)

3. To interrupt printing of the data set (indicated by the ORDSYR5 flag byte)

4. To update device and/or data set characteristics (indicated by the ORDSYR3
and ORDSYR4 flag bytes).

The FSA performs the actions in the order listed above. If an interrupt action is not
specified, the FSA updates the data set characteristics along with any
synchronization and repositioning actions. If a response to the order cannot be
immediately provided to JES, the FSI ORDER routine sets the ORDFLGS1 field in
the common order header section equal to ORDARESP. This notifies JES that the
response to the order will be returned at a later time by means of an FSIREQ
SEND request.

When synch order processing is complete, the FSA responds to JES with the
required data. “Chapter 5. FSI Communication” on page 17 explains how the FSA
responds to JES.

SYNCH

96 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

The Intervention Order
JES issues an intervention order to the FSA’s FSI ORDER routine when a change
in forms, flash, or burster-trimmer-stacker specifications is required for the data set
that JES is currently assigning to the FSA in response to a GETDS request. The
intervention order requires the FSA to process the device buffered data and then
ready the device for operator intervention.

Processing the Intervention Order
When JES issues an FSI intervention order, it passes the address of the
intervention order parameter list in register 1 to the FSA’s FSI ORDER routine. The
intervention order parameter list consists of the following sections:
v Common parameter header
v Common order header
v Intervention order dependent section

The following figure shows the connection between the different sections of the
FSIREQ parameter list for intervention order processing.

The table below lists the initialized fields, the offsets and lengths of these fields, and
the values that JES has assigned. Detailed descriptions of the value assignments
follow this table.

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

INTERVENTION
(ORDIV)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 34. FSIREQ Parameter Lists for Intervention Order Processing

INTERVENTION

Chapter 10. Responding to Device Orders From JES 97

Field Name Length
(bytes)

Value to be assigned

Common Parameter Header Section

FSILEN 4 Length of intervention order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA IDs

Common Order Header Section

ORDFDATA 4 A value supplied to JES by the FSS/FSA as
a CONNECT parameter (CDFFDATA)

ORDRSPAD 4 Address of the order response area
(IAZRESPA)

ORDID 2 ORDINTV

Intervention Order Variable Data Section

ORDIVF1 1 Intervention type

ORDIVF2 1 Update type

ORDIVBTT 8 BTS intervention token

ORDIVFLT 8 Flash intervention token

ORDIVFOT 8 Forms intervention token

ORDIVCFT 8 CFS intervention token

FSILEN
The length of the entire intervention order parameter list. The intervention order
parameter list consists of the IAZFSIP common parameter header section, the
common order header section, and the intervention order dependent section.

FSIFUNC
The ORDER function ID number. FSIORDER is the symbolic equate.

FSIFSID
The FSS/FSA IDs that JES assigned when it started the FSS and FSA.

ORDFDATA
The address of a control block containing FSA related information. The FSA
passed this address to JES in the CDFFDATA field of the CONNECT parameter
list. JES returns this value to the FSA ORDER routine so that it can notify the
appropriate FSA.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The intervention order ID number. ORDINTV is the symbolic equate.

ORDIVF1
This flag byte indicates the type of intervention required. The following
indicators may be set:

ORDIVRBT B‘10000000’
Burster-trimmer-stacker (BTS) intervention is required.

ORDIVRFL B‘01000000’
Flash intervention is required.

ORDIVRFO B‘00100000’
Forms intervention is required.

INTERVENTION

98 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

ORDIVRCF B‘01000000’
Continuous forms stacker (CFS) intervention is required.

ORDIVF2
This flag byte indicates the type of updates required. The following indicators
may be set:

ORDIVUBT B‘10000000’
A BTS token update is required.

ORDIVUFL B‘01000000’
A flash token update is required.

ORDIVUFO B‘00100000’
A forms token update is required.

ORDIVUCF B‘00010000’
A CFS token update is required.

ORDIVBTT
The token for BTS intervention (’Y’ or ’N’).

ORDIVFLT
The token for flash intervention (a user-supplied name).

ORDIVFOT
The token for forms intervention (a user-supplied name).

ORDIVCFT
The token for CFS intervention (’Y’ or ’N’).

The FSI ORDER routine uses the ORDID value to determine that the JES order
requests an intervention action. The FSI ORDER routine then either processes the
order directly or posts an FSA task to process the order. If the intervention order is
for a change in forms or BTS, the FSA needs to ensure all data in the pipeline has
reached the data integrity point (DIP) before responding to JES. If the order is for a
change in forms, the FSA needs to ensure all data in the buffer has reached the
OOP. If a response to the order cannot be immediately provided to JES, the FSI
ORDER routine sets the ORDFLGS1 field in the common order header section
equal to ORDARESP. This notifies JES that the response to the order will be
returned at a later time by means of an FSIREQ SEND request.

When intervention order processing is complete, the FSA responds to JES with the
required data. “Chapter 5. FSI Communication” on page 17 explains how the FSA
responds to JES.

Note: When JES receives the response to the intervention order, it issues a setup
message to the operator. When the operator replies to the message that the
setup is correct, JES issues an FSIREQ POST request to the FSA indicating
that GETDS requests can now be satisfied. The FSA should then reissue the
GETDS request for the data set.

Notifying JES of Order Completion
When the FSA complete the processing for an order it responds to JES with the
required response data. If the FSA is responding to a query, synch, or intervention
order, it needs to initialize the RESPRETC field of the order response area
(IAZRESPA) with a return code and provide information about the data set at the
OOP. For the set order, the FSA needs to initialize only the RESPRETC field

INTERVENTION

Chapter 10. Responding to Device Orders From JES 99

indicating whether the order was processed successfully. Refer to “Chapter 5. FSI
Communication” on page 17 for information about responding to a JES order.

SEND Processing
The FSIREQ SEND request causes control to be passed to the FSI SEND service.
This service processes the return code in the RESPRETC field of the order
response area. If the return code is zero, JES continues processing the order. If the
response is to a query, synch, or intervention order, JES retrieves the data set
information from the order response area and uses this information to respond to
the JES operator command.

If the return code in the order response area is not zero, JES issues an error
message to the JES operator.

INTERVENTION

100 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 11. Stopping an FSS Device

When an operator issues a command to stop a specific device, JES issues a STOP
device order to the FSA. When the FSA receives the STOP device order, it
completes processing the current data set and then performs its device termination
processing. When the device finishes processing the current data set, the FSA does
not request any more work.

Processing the STOP Device Order
To stop a device that is running under an FSS, JES issues the STOP device order
to the FSA’ FSI order routine. JES passes the address of the STOP device order
parameter list in register 1. The parameter list points to the address response area
(IAZRESPA). When the FSI ORDER routine receives the order, it is responsible for
determining the type of order issued and either posting the appropriate FSA task to
process the order or processing the order directly. The value of the ORDID field in
the common order header section of the STOP device order parameter list
represents the type of order the FSA needs to process.

The STOP device order parameter list consists of the following sections:

v Common parameter header

v Common order header

v STOP order function dependent section

The following figure shows the connection between the different sections of the
FSIREQ parameter list for STOP device processing.

JES CODE FSA CODE

Handle response
Issue stop FSA
FSIREQ REQUEST=FSIORDER

Stop all active FSAs
Issue stop FSS
FSIREQ REQUEST=FSIORDER

Handle response

Stop device
FSIREQ REQUEST=FSISEND

Clean up FSA structure
FSIREQ REQUEST=FSIDCON

Clean up FSS structure
FSIREQ REQUEST=FSIDCON

WAIT

WAIT

WAIT

Issue stop device
FSIREQ REQUEST=FSIORDER

Handle response
Put out appropriate message

1

2

3

4

6

5

Figure 35. An Overview of FSI Shutdown Processing

© Copyright IBM Corp. 1988, 2001 101

The following table shows the parameters that JES initializes for the STOP device
order. The values that JES assigns are explained after the table.

Field Name Length
(bytes)

Value JES Assigned

Common Parameter Header

FSILEN 4 Length of STOP order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA identifier

Common Order Header

ORDFDATA 4 Information supplied to JES in the FSA
CONNECT parameter list (CDFFDATA)

ORDRSPAD 4 Address of the order response area

ORDID 2 ORDSPDEV

STOP Order Function Dependent Section

ORDSSSP 4 0

ORDSSF1 1 Type of termination requested

ORDSSID 4 FSA identifier of device to stop

ORDSSAD4 4 Device address in 4-digit format

ORDSSAD 3 Device address in 3-digit format

ORDSSNA 8 Device name

FSILEN
The total length of the STOP order parameter list. The STOP order parameter
list is composed of the common parameter header, the common order header
and the STOP order function dependent section.

FSIFUNC
The ORDER ID number. JES assigns the symbolic value FSIORDER to this
field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

START/STOP
(ORDSS)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 36. FSIREQ Parameter Lists for STOP Device Processing

Stopping a Device

102 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

ORDFDATA
The address of a control block containing FSA-related information. The FSA
supplied this address to JES in the CDFFDATA field of the CONNECT
parameter list. JES returns this value in the STOP device order parameter list
so that the FSA’s FSI ORDER routine can activate the appropriate FSA task to
process the order.

ORDRSPAD
The address of the order response area (IAZRESPA).

ORDID
The STOP device order ID number. JES assigns the symbolic value
ORDSPDEV to this field.

ORDSSSP
This field is set to zero. JES supplies the address of the device initialization
area in this field for the START FSA order only.

ORDSSF1
This flag byte indicates the type of device termination requested by JES.

ORDSSNO B‘10000000’
The FSA is to terminate the device normally.

ORDSSAB B‘01000000’
The FSA is to abnormally terminate the device.

ORDSSDU B‘00001000’
The FSA is to take a dump when the device terminates.

ORDSSID
The FSA identifier of the device to stop.

ORDSSSI
The FSS section of the FSA identifier.

ORDSSAI
The FSA section of the FSA identifier.

ORDSSAD4
The 4-digit device address in printable form. If the printer is a non-channel
attached device, this field will contain blanks.

ORDSSAD
The 3-digit device address in printable form. If the printer is a non-channel
attached device, this field will contain blanks.

ORDSSNA
The device name in printable form.

Notifying JES When the Device is Stopped
When the FSA receives the STOP device order from JES, the FSA decides whether
it can respond immediately, or needs to perform additional processing before it can
respond. Before responding to the stop device order, the FSA should wait for the
device to finish printing the data set the printer is currently working on and push
that data set to the stacker.

Refer to “Chapter 5. FSI Communication” on page 17 for information about
responding to the STOP device order.

Stopping a Device

Chapter 11. Stopping an FSS Device 103

SEND Processing
When JES receives the SEND request, it processes the return code set by the FSA
in the RESPRETC field of the order response area. If the return code is zero, JES
issues a STOP FSA order. Refer to “Chapter 12. Stopping an FSA” on page 105 for
more information about the STOP FSA order. If the return code is greater than zero,
JES issues another STOP device order. This second STOP device order requests
the FSA to abnormally terminate the device and take a dump.

Stopping a Device

104 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 12. Stopping an FSA

JES normally issues a STOP FSA order to the FSS in response to the FSA’s
notification that the device has stopped. After the FSS receives the STOP FSA
order from JES, the FSA performs whatever cleanup processing needs to be done
and then responds to JES by issuing an FSA level DISCONNECT.

There are other situations where JES issues a STOP FSA order. JES issues a
STOP FSA order when the FSA notifies JES (in response to a START device order)
that the device could not be started. JES also issues a STOP FSA order if it
determines that the FSA must terminate before JES had a chance to stop the
device (that is, unrecoverable JES error).

Processing the STOP FSA Order
To stop an FSA that is running under an FSS, JES issues the STOP FSA order to
the FSS’s FSI order routine. Since there can be multiple FSAs running under an
FSS, JES issues a STOP FSA order for each FSA in the FSS address space. JES
passes the address of the STOP FSA order parameter list in register 1. The
parameter list contains the address of the order response area (IAZRESPA). When
the FSS’ FSI ORDER routine receives the order, it is responsible for determining
the type of order issued and then either posting the appropriate FSA task to
process the order or processing the order directly. The value of the ORDID field in
the common order header section of the STOP FSA order parameter list represents
the type of order the FSS needs to process.

The STOP FSA order parameter list consists of the following sections:

JES CODE FSA CODE

Handle response
Issue stop FSA
FSIREQ REQUEST=FSIORDER

Stop all active FSAs
Issue stop FSS
FSIREQ REQUEST=FSIORDER

Handle response

Stop device
FSIREQ REQUEST=FSISEND

Clean up FSA structure
FSIREQ REQUEST=FSIDCON

Clean up FSS structure
FSIREQ REQUEST=FSIDCON

WAIT

WAIT

WAIT

Issue stop device
FSIREQ REQUEST=FSIORDER

Handle response
Put out appropriate message

1

2

3

4

6

5

Figure 37. An Overview of FSI Shutdown Processing

© Copyright IBM Corp. 1988, 2001 105

v Common parameter header

v Common order header

v STOP FSA order dependent section

The following figure shows the connection between the different sections of the
FSIREQ parameter list for STOP FSA processing.

The following table shows the parameters that JES initializes for the STOP FSA
order. The values that JES assigns are explained after the table.

Field Name Length
(bytes)

Value JES Assigned

Common Parameter Header

FSILEN 4 Length of STOP order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS/FSA identifier

Common Order Header

ORDFDATA 4 Information supplied to JES in the FSS
CONNECT parameter list (CDFFDATA)

ORDID 2 ORDSPFSA

START/STOP Order

ORDSSSP 4 0

ORDSSF1 1 Type of termination requested

FSILEN
The total length of the STOP order parameter list. The STOP order parameter
list is composed of the common parameter header, the common order header
and the STOP order dependent section.

FSIFUNC
The ORDER ID number. JES assigns the symbolic value FSIORDER to this
field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

START/STOP
(ORDSS)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 38. FSIREQ Parameter Lists for STOP FSA Processing

Stopping an FSA

106 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

ORDFDATA
The address of a control block containing FSS-related information. The FSS
passed this address to JES in the CDFFDATA field of the CONNECT parameter
list. JES returns this value in the STOP FSA order parameter list so that the
FSS’ FSI ORDER routine can activate the appropriate FSA task to process the
order.

ORDID
The STOP FSA ID number. JES assigns the symbolic value ORDSPFSA to this
field.

ORDSSSP
This field is set to zero. JES supplies the address of the device initialization
area in this field for the START FSA order only.

ORDSSF1
This flag byte indicates the type of termination requested. One or more of the
following indicators can be set:

ORDSSNO B‘10000000’
The FSA is to terminate normally.

ORDSSAB B‘01000000’
The FSA is to abnormally terminate.

ORDSSDU B‘00001000’
The FSA is to take a dump when it terminates.

Preparing for FSA Disconnect
JES notifies the FSS task when an FSA is to be stopped. The FSS is responsible
for notifying the appropriate FSA that it is to terminate. The FSA performs cleanup
processing and then issues the FSA level DISCONNECT. Cleanup processing
includes issuing RELDS requests for any data sets not yet released, freeing any
storage, unallocating the device, etc. Refer to “Releasing a SYSOUT Data Set” on
page 79 for more information about RELDS processing.

Before the FSA can issue the DISCONNECT, it must:
v Provide an 18 word save area
v Initialize the DISCONNECT parameter list.

Initializing the FSIREQ DISCONNECT Parameter List
The FSA needs to initialize the following parameters before it issues the FSIREQ
DISCONNECT request.

Field Name Value (bytes) Value to be Assigned

General Header

FSILEN 4 Length of DISCONNECT parameter list

FSIFUNC 4 FSIDCON

FSIFSID 4 The FSS/FSA identifier

DISCONNECT Function Dependent Area

CDFFLGR1 1 Specifies a normal or abnormal termination

CDFSTOR 4 Address of storage for SSOB/SSIB pair

CDFSSID 4 Name of the JES to which the FSA is
connected

Stopping an FSA

Chapter 12. Stopping an FSA 107

FSILEN
The length of the entire DISCONNECT parameter list. The DISCONNECT
parameter list consists of both the IAZFSIP common header section and the
DISCONNECT function dependent section.

FSIFUNC
The DISCONNECT function ID number. The FSA assigns the symbolic value
FSIDCON to this field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.

FSIFSSID
This field contains the FSS portion of the FSS/FSA identifier.

FSSFSAID
This field contains the FSA portion of the FSS/FSA identifier.

CDFFLGR1
Specifies the type of termination requested by the FSA. One of the following
indicators can be set:

CDFNORM B‘10000000’
Specifies a normal DISCONNECT. The FSA is disconnecting in response to
a STOP FSA order or as a result of FSA-initiated termination.

CDFABNOR B‘01000000’
Specifies an abnormal DISCONNECT. The FSA is disconnecting because of
an unrecoverable error.

CDFSTOR
Address of the storage for the SSOB/SSIB pair.

CDFSSID
Name of the JES to which the FSA is connected. If this parameter is not
specified, the FSA is disconnected from the primary JES defined to your
installation.

Issuing the FSIREQ DISCONNECT Request
When the FSA has completed initializing the DISCONNECT parameter list, it uses
the FSIREQ macro to invoke the FSI DISCONNECT service. The format of this
macro call is:
FSIREQ REQUEST=FSIDCON,PARM=DISCONNECT parm-list-address,

TARGET=JES,FSID=fsid

Refer to “Chapter 4. The FSIREQ Macro” on page 13 for a complete description of
each operand on this macro and any defaults that may be taken.

FSA-Initiated Termination
If the FSA becomes aware that it needs to initiate termination (for example, VTAM
lines come down), it issues a SEND request to JES to inform JES about the
termination. JES determines the current stage of FSA processing and then attempts
to shut down the FSA as normally as possible. JES issues a STOP device order
and then a STOP FSA order. The FSA is expected to respond normally to these
orders.

Stopping an FSA

108 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Initializing the FSIREQ SEND Parameter List
The FSA needs to initialize the following parameters before it issues the FSIREQ
SEND request.

Field Name Value (bytes) Value to be Assigned

General Header

FSILEN 4 Length of SEND parameter list

FSIFUNC 4 FSISEND

FSIFSID 4 The FSS/FSA identifier

SEND Function Dependent Area

SNDTYPE 1 Special types of SEND

FSILEN
The length of the entire SEND parameter list. The SEND parameter list consists
of both the IAZFSIP common header section and the SEND function dependent
section.

FSIFUNC
The SEND function ID number. The FSA assigns the symbolic value FSISEND
to this field.

FSIFSID=
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.

FSIFSSID
This field contains the FSS portion of the FSS/FSA identifier.

FSSFSAID
This field contains the FSA portion of the FSS/FSA identifier.

SNDTYPE
The SNDTYPE ID number. The FSA assigns the symbolic value SNDTYFIT to
this field. SNDTYFIT indicates that the SEND request is a request for
FSA-initiated termination.

SNDTYRSP
Response to an order.

SNDTYTDS
Send requested via GDSFLGR1 indicating DS reached OOP.

SNDTYFIT
Request for FSA term.

SNDTYINT
Unsolicited device intervention detected from the FSA.

SNDTYICL
Unsolicited device intervention cleared from the FSA.

SNDTYDNR
Unsolicited device not responding received from the FSA.

SNDTYDCL
Unsolicited device not responding cleared from the FSA.

SNDTYEXT
If one of the extended send types in SNDTYP2 is being used, this value
must be set in SNDTYPE.

Stopping an FSA

Chapter 12. Stopping an FSA 109

SNDTYP2
This is an extended send type. If this send type is used, SNDTYEXT must be
set in SNDTYPE. SNDTYP2 can be set to one of the following values:

SNDE58OK
Unsolicited request to issue an EOD-OK ENF58 signal.

SNDE58ER
Unsolicited request to issue an EOD-Error ENF58 signal.

Issuing the FSIREQ SEND Request
When the FSA has completed initializing the SEND parameter list, it uses the
FSIREQ macro to invoke the FSI SEND service. The format of this macro call is:
FSIREQ REQUEST=FSISEND,PARM=SEND parm-list-address,

TARGET=JES,FSID=fsid

Refer to “Chapter 4. The FSIREQ Macro” on page 13 for a complete description of
each operand on this macro and any defaults that may be taken.

SEND Processing
If JES receives the SEND request for an FSA-Initiated termination:

v Before JES has issued the STOP device order, JES issues a STOP device order
to the FSA.

v After JES has issued the STOP device order but before it has issued the STOP
FSA order, JES issues a STOP FSA order to the FSA.

v After JES has issued the STOP FSA order, JES awaits the FSA’s response from
the STOP FSA order (FSA-level DISCONNECT).

DISCONNECT FSA Processing
When JES receives the FSA DISCONNECT request from the FSA, JES validates
the FSA information and decides whether it can normally terminate the FSA. As part
of FSA disconnect processing, JES issues RELDS requests for all data sets not yet
released.

How JES Handles Logic Errors and Abends
During the validation of the FSA information, JES may determine that it can not
disconnect the FSA. If JES could not disconnect the FSA, the value of the
SSOBRETN field of the SSOB will be non-zero. This non-zero value indicates that
the FSS should abnormally terminate the FSA.

How JES Monitors Timing of FSA DISCONNECT
When JES issues the STOP FSA order to the FSS, JES starts a timer. If the FSS
does not respond with a FSA DISCONNECT within a specific length of time, JES
issues a message to the operator.

Stopping an FSA

110 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 13. Stopping an FSS

JES issues a STOP FSS order to the FSS when an operator command requests
that JES be shut down. JES will also issue the STOP FSS order when all printers
are shut down at the installation anticipates that the FSS will no longer be required.
After the FSS receives the STOP FSS order from JES, the FSS performs its
cleanup processing and then responds to JES by issuing an FSS level
DISCONNECT.

Processing the STOP FSS Order
To stop an FSS, JES issues the STOP FSS order to the FSS’ FSI ORDER routine.
The FSS supplied the address of its FSI ORDER routine to JES during FSS
CONNECT processing in the CDFAD field of the CONNECT parameter list. JES
passes the address of the STOP FSS order parameter list. The parameter list
contains a pointer to the JES provided order response area (IAZRESPA).

When the FSI ORDER routine receives the order, it is responsible for determining
the type of order issued and then either posting an FSS task to process the order
or processing the order directly. The value of the ORDID field represents the type of
order the FSS needs to process.

The STOP FSS order parameter list consists of the following sections:

v Common parameter header

v Common order header

v STOP FSS order dependent section

JES CODE FSA CODE

Handle response
Issue stop FSA
FSIREQ REQUEST=FSIORDER

Stop all active FSAs
Issue stop FSS
FSIREQ REQUEST=FSIORDER

Handle response

Stop device
FSIREQ REQUEST=FSISEND

Clean up FSA structure
FSIREQ REQUEST=FSIDCON

Clean up FSS structure
FSIREQ REQUEST=FSIDCON

WAIT

WAIT

WAIT

Issue stop device
FSIREQ REQUEST=FSIORDER

Handle response
Put out appropriate message

1

2

3

4

6

5

Figure 39. An Overview of FSI Shutdown Processing

© Copyright IBM Corp. 1988, 2001 111

The following figure shows the connection between the different sections of the
FSIREQ parameter list for STOP FSS processing.

The following table shows the parameters that JES initializes for the STOP FSS
order. The values that JES assigns are explained in the table.

Field Name Length
(bytes)

Value JES Assigned

Common Parameter Header

FSILEN 4 Length of STOP order parameter list

FSIFUNC 4 FSIORDER

FSIFSID 4 The FSS identifier

Common Order Header

ORDFDATA 4 Information supplied to JES in the FSS
CONNECT parameter list (CDFFDATA)

ORDID 2 ORDSPFSS

STOP Order

ORDSSSP 4 0

ORDSSF1 1 Type of termination requested

FSILEN
The total length of the STOP order parameter list. The STOP order parameter
list consists of the common parameter header, the common order header and
the STOP order header.

FSIFUNC
The ORDER ID number. JES assigns the symbolic value FSIORDER to this
field.

FSIFSID
The FSS identifier that JES assigned when it started the FSS.

ORDFDATA
The address of a control block containing FSS-related information. The FSS
passed this address to JES in the CDFFDATA field of the CONNECT parameter

PARM HEADER
(IAZFSIP)

ORDER HEADER
(ORDPARM)

START/STOP
(ORDSS)

ORDER RESPONSE
AREA

(IAZRESPA)

Figure 40. FSIREQ Parameter Lists for STOP FSS Processing

Stopping an FSS

112 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

list. JES returns this value in the STOP FSS order parameter list so that the
FSS’ FSI ORDER routine can cause the appropriate FSS task to process the
order.

ORDID
The STOP FSS ID number. JES assigns the symbolic value ORDSPFSS to this
field.

ORDSSSP
JES supplies this area for the START FSA order only.

ORDSSF1
This flag byte contains the type of termination JES is requesting.

ORDSSNO B‘10000000’
The FSS should terminate normally.

ORDSSAB B‘01000000’
The FSS should abnormally terminate because of an unrecoverable JES
error.

ORDSSDU B‘00001000’
The FSS will take a dump when it terminates.

Preparing for FSS Disconnect
When the FSS receives the STOP FSS order from JES, the FSS performs cleanup
processing and then issues the FSS level DISCONNECT. Cleanup processing
includes issuing FSA disconnects for all FSAs running under the FSS that are still
connected, freeing storage, deleting ESTAEs, etc. Refer to “Preparing for FSA
Disconnect” on page 107 for more information about FSA level disconnects.

Before the FSS can issue the DISCONNECT, it must:
v Provide an 18 word save area
v Initialize the DISCONNECT parameter list.

Initializing the FSIREQ DISCONNECT Parameter List
The FSS needs to initialize the following parameters before it issues the FSIREQ
DISCONNECT request.

Field Name Value (bytes) Value to be Assigned

General Header

FSILEN 4 Length of DISCONNECT parameter list

FSIFUNC 4 FSIDCON

FSIFSID 4 The FSS/FSA identifier

DISCONNECT Function Dependent Area

CDFFLGR1 1 Specifies a normal or abnormal termination

CDFSTOR 4 Address of storage for SSOB/SSIB pair

CDFSSID 4 Name of the JES to which the FSS is
connected

FSILEN
The length of the entire DISCONNECT parameter list. The DISCONNECT
parameter list consists of both the IAZFSIP common header section and the
DISCONNECT function dependent section.

Stopping an FSS

Chapter 13. Stopping an FSS 113

FSIFUNC
The DISCONNECT function ID number. The FSS assigns the symbolic value
FSIDCON to this field.

FSIFSID
The FSS/FSA identifier that JES assigned when it started the FSS and FSA.

FSIFSSID
This field contains the FSS portion of the FSS/FSA identifier.

FSSFSAID
This field contains the FSA portion of the FSS/FSA identifier.

CDFFLGR1
Specifies the type of termination requested by the FSS.

CDFNORM B‘10000000’
Specifies a normal DISCONNECT. The FSS is disconnecting in response to
a STOP FSS order.

CDFABNOR B‘01000000’
Specifies an abnormal DISCONNECT. The FSS is disconnecting because
of an unrecoverable error.

CDFSTOR
Address of the storage for the SSOB/SSIB pair.

CDFSSID
Name of the JES to which the FSS is connected. If this parameter is not
specified, the FSS is disconnected from the primary JES defined to your
installation.

Issuing the FSIREQ DISCONNECT Request
When the FSS has completed initializing the DISCONNECT parameter list, it uses
the FSIREQ macro to invoke the FSI DISCONNECT service. The format of this
macro call is:
FSIREQ REQUEST=FSIDCON,PARM=DISCONNECT parm-list-address,

TARGET=JES,FSID=fsid

Refer to “Chapter 4. The FSIREQ Macro” on page 13 for a complete description of
each operand on this macro and any defaults that may be taken.

DISCONNECT FSS Processing
When JES receives the FSS DISCONNECT request from the FSS, JES validates
the FSS information and decides whether it can normally terminate the FSS
address space.

How JES Handles Logic Errors and Abends
During the validation of the FSS information, JES may determine that it can not
disconnect the FSS. If JES could not normally disconnect the FSS, the value of the
SSOBRETN field of the SSOB will be non-zero. This non-zero value indicates that
the FSS should abnormally terminate. If the FSS abnormally terminates before it
disconnects the FSAs running under it, JES will disconnect the FSAs.

Stopping an FSS

114 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

How JES Monitors Timing of FSS DISCONNECT
When JES issues the STOP FSS order to the FSS, JES starts a timer. If the FSS
does not respond with a FSS DISCONNECT within a specific length of time, JES
terminates the FSS address space.

Stopping an FSS

Chapter 13. Stopping an FSS 115

116 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 14. FSS Output Descriptor Support

FSS output descriptor support allows a functional subsystem to use JCL that is not
known to JES. An FSS can use this JCL to support sophisticated printers. Users
can specify complex printing requirements for data sets that are processed by FSS
devices.

Data set printing requirements are specified on the OUTPUT JCL statement. This
statement supports several FSS-specific parameters such as FORMDEF and
PAGEDEF. z/OS MVS JCL Reference describes each of the parameters on the
OUTPUT JCL statement.

The following topics describe:

v The scheduler JCL facility and how it interfaces with JES and the FSS to provide
FSS output descriptor support.

v An overview of output descriptor processing as it relates to the FSS.

v The tasks involved in retrieving output descriptor information.

The Scheduler JCL Facility
The scheduler JCL facility (SJF) controls output descriptor information processing.
This facility consists of a set of service routines that interface with JES and the
FSS/FSA to:

v Store JCL keyword subparameter information in the scheduler work block. For
each JCL statement, SJF builds one or more scheduler work blocks and then
chains these scheduler work blocks together.

v Update the information in the scheduler work blocks if an operator command
changes a keyword value.

v Retrieve JCL information from scheduler work blocks.

An Overview of OUTPUT Processing
At a job level, a user can specify output processing specifications on the OUTPUT
JCL statement. During the job’s execution, the converter/interpreter verifies the JCL
and invokes SJF to save the JCL keyword information in scheduler work blocks.
Although JES does not use the FSS-specific keyword information, it passes the
scheduler work block token to the FSA when it assigns the corresponding data set
to the FSA.

The FSI GETDS service invokes the SJF PUT scheduler work block or SJF
UPDATE service to obtain a token for the data set assigned to the FSA. The FSA
can use this to retrieve data set characteristics specified on the OUTPUT JCL
statement. Figure 41 on page 118 illustrates OUTPUT JCL Processing for the FSS.

© Copyright IBM Corp. 1988, 2001 117

Using SJF Services
The FSA invokes SJF services to retrieve JCL keyword subparameter information
specified on the OUTPUT JCL statement.

To retrieve JCL keyword information specified on the OUTPUT JCL statement, the
FSA uses the token obtained from GETDS processing to invoke the SJF
RETRIEVE service.

Requirements for Using SJF Services
The following are rules and restrictions for using the SJF RETRIEVE service.

v The FSS/FSA must be in supervisor state, and run in key 0-7.

v The FSS/FSA must provide an 18-word save area.

v If the caller’s storage area is referenced by SJF, it must not be fetch protected.

v SJF services are not available in cross-memory mode.

v Use of the multiple invocation facility of SJF is limited to under one task.

//JOB...
//OUTPUT...

SWB TOKEN

GETDS PARMLIST

EXECUTION

SPOOL

OPERATOR CHANGES ARE UPDATED AT GETDS TIME

FSA
USES SJF SERVICES TO
DETERMINE DATA SET
CHARACTERISTICS

Figure 41. OUTPUT JCL Processing

FSS Output Descriptor Support

118 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

The Scheduler JCL Facility RETRIEVE Request
The FSS/FSA invokes the SJF RETRIEVE service to retrieve the JCL keyword
subparameter information. The FSA supplies the token to the service to identify the
correct scheduler work block chain.

The SJF mapping macros related to the RETRIEVE service are:
v IEFSJREP - maps the SJF RETRIEVE parameter list
v IEFZB4D0 - maps the text unit pointer list and text units
v IEFSJRC - maps the SJF reason codes.

The following topics describe the tasks the FSA performs to invoke the SJF
RETRIEVE service and the associated SJF processing.

Initializing the Keyword List
The FSA needs to provide a keyword list (SJRELIST) to the SJF RETRIEVE
service. The keyword list contains paired fields, each pair consists of a keyword
field and a pointer field. In the list, the FSA specifies the JCL keywords for which
information is to be retrieved. For each keyword specified, the SJF RETRIEVE
service returns a pointer to the text unit pointer list associated with the keyword.

The following table shows the SJRELIST paired fields and their lengths. The fields
that the FSA initializes are indicated.

Field Name Length
(bytes)

Value to be assigned

SJRELIST

SJREKEYW 8 keyword 1 (supplied by FSA)

SJRETPAD 4 pointer (supplied by SJF)

SJREKEYW 8 keyword 2 (supplied by FSA)

SJRETPAD...

4...

pointer (supplied by SJF)...

Establishing a Storage area
For each SJF RETRIEVE request, the FSA needs to establish a storage area in
which SJF is to return the output descriptor information. The size of this storage
area depends on the number of keywords for which the FSA is requesting
information. See Figure 42 on page 122 for a graphical representation of the SJF
control blocks returned in the storage area.

The FSA specifies the address and size of this storage area in the SJF RETRIEVE
parameter list.

Initializing the SJF RETRIEVE Parameter List
The FSA needs to initialize certain fields of the SJF RETRIEVE parameter list
(IEFSJREP). The table below lists the required fields, the lengths of these fields,
and the values that the FSA must assign. Detailed descriptions of the value
assignments follow this table.

FSS Output Descriptor Support

Chapter 14. FSS Output Descriptor Support 119

Field Name Length
(bytes)

Value to be assigned

IEFSJREP Parameter List

SJREID 4 ’SJRE’

SJREVERS 1 SJRECVER

SJRELEN 2 SJRELGTH

SJRESTOR 4 Local storage pointer or zero

SJREJDVT 8 GDSJDVTN or zeroes

SJRETOKN 8 output descriptor block chain token
(GDSOUTPT or SJFNTOKN)

SJREAREA 4 Storage area address

SJRESIZE 2 Size of storage area

SJRENKWD 2 Number of keywords passed

SJREKWDL 4 Keyword list address

SJREID
The identifier ‘SJRE’ of the RETRIEVE parameter list.

SJREVERS
The current version number of the SJF RETRIEVE service. The FSS/FSA
assigns the symbolic equate SJRECVER to this field.

SJRELEN
The length of the RETRIEVE parameter list. The FSS/FSA assigns the symbolic
equate SJRELGTH to this field.

SJRESTOR
If this is the first SJF RETRIEVE request, the FSS/FSA sets this field to zero. If
this is not the first request, the FSS/FSA provides the local storage pointer
returned from the previous FIND output descriptor information request.

SJREJDVT
The FSA initializes this field with the name of the JCL definition vector table
(JDVT) returned from FSI GETDS processing in the GDSJDVTN field of the
GETDS parameter list.

SJRETOKN
The scheduler work block chain token. The FSA initializes this field with the
token returned from GETDS processing in the GDSOUTPT field of the GETDS
parameter list.

SJREAREA
The address of the storage area in which SJF is to return the output descriptor
information in the form of text units.

SJRESIZE
The amount of storage allocated for the output descriptor information.

SJRENKWD
The number of keywords passed in the keyword list (SJRELIST).

SJREKWDL
The address of the keyword list (SJRELIST).

FSS Output Descriptor Support

120 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Issuing the SJFREQ RETRIEVE Request
When the FSS has completed initializing the IEFSJREP parameter list, it issues the
SJFREQ macro to invoke the SJF RETRIEVE service.

When the FSS has completed initializing the IEFSJREP parameter list, it issues the
SJFREQ macro to invoke the SJF RETRIEVE service. The format of this macro call
is:
SJFREQ REQUEST=RETRIEVE

SJF RETRIEVE Processing
The SJF RETRIEVE service uses the token provided in the IEFSJREP parameter
list to locate the indicated scheduler work block chain. When the scheduler work
block chain is found, the service retrieves the text units associated with each
keyword specified in SJRELIST.

The SJF RETRIEVE service next builds a text unit pointer list for each keyword and
supplies a pointer to the list in the keyword’s corresponding pointer field
(SJRETPAD) of SJRELIST. The text unit pointer list contains pointers to the
individual text units associated with the keyword.

Information Returned from SJF RETRIEVE Processing
On return from SJF RETRIEVE processing, the FSA-provided storage area contains
the text unit pointers list and the individual text units associated with each keyword.
The keyword list (SJRELIST) contains paired fields, each pair consisting of a JCL
keyword and a pointer to the text unit pointers lists for that keyword. Figure 42 on
page 122 shows the SJF control blocks returned from SJF RETRIEVE processing
and their relationships.

Support for ESS Keywords
JES sets the CDFS1ESS bit of the FSS CONNECT parameter list to indicate that
JES supports ESS keywords. These keywords specify the name, address, room
and department associated with the OUTPUT.

Writing Information into SMF Records
If your system uses JES2, output descriptor information can be written into the SMF
records that the FSS/FSA produces. These records include types 6, 24 and 57.

FSS Output Descriptor Support

Chapter 14. FSS Output Descriptor Support 121

POINTER
TO CALLER
PROVIDED
STORAGE
AREA

SJREKEYW
(KEYWORD 1)

POINTER

TEXT UNIT

TEXT UNIT

POINTER

SJRETPAD
(KEYWORD 1)

POINTER

TEXT UNIT

SJREKEYW
(KEYWORD 2)

.

.

.

.

.

.

SJRETPAD
(KEYWORD 2)

.

.

.

SJRE AREA

SJRE LIST

TEXT UNIT
POINTERS LIST

TEXT UNIT
POINTERS LIST

CALLER PROVIDED STORAGE AREA

Figure 42. SJF Control Blocks Returned from SJF RETRIEVE

122 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Chapter 15. FSI Trace

This section provides Diagnosis, Modification or Tuning Information.

Through the use of the generalized trace facility (GTF), the FSI provides a method
of diagnosing problems that might occur in the FSS address space. Because FSI
tracing may slow system performance, you should request FSI tracing only when a
problem has occurred.

Using GTF to Trace FSI Communication
The generalized trace facility (GTF) collects trace data about events occurring
during the interaction between JES and the FSS or FSA. You can tailor the type of
tracing you want performed by specifying what FSI function calls and/or what
FSS-driven devices are to be traced.

Tracing FSI communications consists of the following steps:
v Starting GTF
v Specifying GTF trace options
v Recreating the problem
v Stopping GTF.

Starting GTF
To request FSI tracing, ask the operator to enter the following command to start
GTF:
S GTF.identifier,devname,volserial,(time=yes)

where:

identifier
specifies the user-specified name identifying this specific GTF session.

devname
specifies the device number or device type of an output device to contain the
trace data set.

volserial
indicates the serial number of a magnetic tape or direct access volume that is
to contain the trace data set.

time=yes
requests that every logical trace record is to be time-stamped in addition to the
block time stamp associated with every block of data.

Note: For more information about the parameter values on the START GTF
command, refer to z/OS MVS Diagnosis: Tools and Service Aids.

In response to the START GTF command, GTF issues the following message that
asks the operator to enter trace operations:
xx AHL100A SPECIFY TRACE OPTIONS

Specifying GTF Trace Options
In response to the SPECIFY TRACE OPTIONS message, you can decide to trace
the FSI communications by the specific FSI function call or the specific FSS-driven

© Copyright IBM Corp. 1988, 2001 123

device, or both. To ask GTF to prompt you for both the specific event id and the
procname for the FSS-driven device, respond:
r xx,trace=usrp,jobnamep

GTF responds with the following message, asking for the event ids and the name of
the FSS:
xx AHL101A SPECIFY TRACE EVENT KEYWORDS--USR=,JOBNAME=

Each FSI function call is assigned a GTF event id as follows:

FSI Function Call Event id (usr=)

ORDER F54

POST F55

GETDS F56

GETREC F57

FREEREC F58

RELDS F59

CHKPT F5A

SEND F5B

CONNECT F5C

DISCONNECT F5D

To get FSI tracing for a set of specific function calls, respond to message AHL101A
with the user event ids for that set of FSI function calls.

To get FSI tracing for a specific FSS, respond to message AHL101A with the
jobname parameter set equal to the procname specified on your JES FSSDEF
initialization statement. Use the following table to determine the value to code for
the jobname parameter to give you the trace you want.

Type of Tracing Value of jobname
Parameter

Result of Trace

Traces originating from the
FSS

FSS procname (from the
FSSDEF initialization
statement)

All specified user events
originating from this FSS.

Traces originating from JES2 JES procname All specified user events
originating from JES2.
Note: This trace results in
data for each active FSS.

Traces originating from JES3 FSS procname (from the
FSSDEF initialization
statement)

All specified user events
originating from this FSS.

The following example is a response to message AHL101A with GTF tracing for all
ORDER and POST function calls processed in the FSS whose procname is fss1:
r xx,usr=(f54,f55),jobname=(fss1)

GTF then issues the following message to ask if you want to specify more options,
or are finished specifying the trace options:
xx AHL102A CONTINUE TRACE DEFINITION OR REPLY END

FSI Trace

124 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

If you are finished specifying the GTF options, respond:
r xx,end

GTF then issues two messages, the first to confirm your trace options and the
second to allow you to re-specify the options if they were entered incorrectly:
AHL103I TRACE OPTIONS SELECTED--USR=(f54,f55),JOBNAME=(fss1)

xx AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

If you specified the trace options correctly, respond:
r xx,u

Finally, GTF issues the following message to specify that GTF tracing is now in
effect:
AHL031A GTF INITIALIZATION COMPLETE

Recreating the Problem
You can now issue JES commands to recreate the conditions under which the
problem occurred. In this example, GTF captures the information exchanged during
the ORDER and POST FSI function calls. You may need additional information to
help diagnose the problem beyond that which is provided in the FSI trace records.
See Table 4 on page 128 for a summary of the information that is provided in the
FSI trace records. If you decide that you need additional information you can use
the USERDATA area to record that information. Use the following procedure to
establish a user data area to record additional trace information:

1. GETMAIN storage for the user data area.

2. Place the address of this user data area into the FSITEXT field in the IAZFSIP
parameter list common header area.

3. Use the FSIUDATA mapping (in the IAZFSIP mapping macro) to fill in the
following:

FSIUDLEN
Length of the user data area, which includes the FSIUDLEN and
FSIUDNAM fields as well as the actual user data. This length cannot
exceed 2,000 bytes.

FSIUDNAM
Eight-character routine name that generates the FSI function call.

FSIUDTXT
User specified data to be generated in the FSI trace record when GTF
tracing is active. Include information that is not available in the IAZFSIP. For
example, the name of the data set that was printing when the problem
occurred.

Stopping GTF
After you have collected the necessary data, issue the following command to stop
GTF:
P identifier

where:

identifier
specifies the user-specified name identifying this specific GTF session.

FSI Trace

Chapter 15. FSI Trace 125

Note: For more information about the parameter values on the STOP GTF
command, refer to z/OS MVS Diagnosis: Tools and Service Aids.

Viewing FSI Trace Data
Use the MVS IPCS facility to view the information gathered by GTF. These are the
steps:

v Define the default data set name used by IPCS to the data set name that
contains the trace data

v Enter this command from the IPCS command panel:
gtf usr(f54, f55, f56) terminal

The formatted trace records are displayed on the terminal. For more information
on the GTF command, enter:

h gtf

Reading GTF Records
Use the following example to understand the contents of the different sections of
the FSI trace record. Table 4 on page 128 follows the example. Use this table to
determine the parts of the FSI trace record that are displayed for each FSI function
call.

�1� - The common header contains the following fields:

NAME
The FSA name, if the FSA had been started; otherwise, the FSS name. To
determine if the FSA has been started, look at the FSID field. If the last four
characters of the FSID field are zeros, the FSA has not been started.

FSID
Specifies a value that uniquely identifies the FSS or FSA. JES assigns the FSS
an identifier of the form xxxx0000, where xxxx is a unique number. JES assigns
the FSA an identifier of the form xxxxyyyy, where xxxx corresponds to the
controlling FSS identifier, and yyyy is a unique number for each FSA.

IAZFSIH: 00000000
TOD...... 01/03/89 16:19:08

** FSI TRACE RECORD **
** CALL **
** FREE REC **

NAME..... PRINTR2 FSID..... 00030001 SEQ...... 00000001 FLAG... .. 01
�1� TOD...... 01/03/89 16:19:08

D7D9C9D5 E3D9F240 00030001 00000001 01F0F161 | PRINTR2 01/ |
IAZFSIP: 00000000
+0000 LEN...... 00000038 FUNC..... 00000005 FSSID.... 0003 FSAID.... 0001 RESN..... 00000000

�2� +0010 TEXT..... 00000000
+0000 00000038 00000005 00030001 00000000 00000000 00000000 | |
FLRPARM: 00000000
+0000 INDX..... 0010D3B0 DSID..... 9FA9F27A 67C1D401 00000000 EXTN..... 000B5208

�3� +0000 0010D3B0 9FA9F27A 67C1D401 00000000 000B5208 D1C5E2F3 00000000 | L0Z2: AM JES3 |
+001C 00000000 | |
FSIGPRS: 00000000
R00...... 01FD4728 R01...... 000415DE R02...... 81A23000 R03...... 00000001 R04...... 000B51C8 R05...... 81A23000

�4� R06...... 000B4A80 R07...... 0004380B R08...... 00CACEE0 R09...... 0010D3B0 R10...... 000B51E0 R11...... 0004280C
R12...... 0004180D R14...... 00000000 R15...... 000BEE08

BLOCKID.. USERDATA BLOCKLEN. 00000000
�5� BLOCKID.. RSV1 BLOCKLEN. 00000000

BLOCKID.. IAZIDX BLOCKLEN. 00000138

FSI Trace

126 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

SEQ
Specifies the order in which this event occurred for this specific FSID.

FLAG
Specifies whether the trace record is for the function call (01) or for the return
from the function call (81).

TOD
Specifies the time of day the event was recorded.

�2� - The IAZFSIP common header contains the following fields:

LEN
Specifies the total length of the parameter list for this function call.

FUNC
The function id number of this function call. Refer to “Appendix B. Numeric
Values of FSI Services and Orders” on page 141 for the values of the function
id number.

FSSID
The FSS identifier that JES assigned when it started the FSS.

FSAID
The FSA identifier that JES assigned when it started the FSS.

RESN
The reason code for the function failure. If this value is not zero, a problem has
occurred.

TEXT
The address of user-supplied trace data. You can use this to help diagnose FSI
problems.

�3� - The specific function call section contains the value of the fields in the
parameter lists for that function call. Table 4 on page 128 specifies which formatted
sections are included for each specific type of FSI function call.

�4� - The general purpose register section contains the contents of registers 0-15
at the time the event was traced.

�5� - The specific function call section contains the BLOCKID and BLOCKLEN for
those function-specific parameter lists that are not formatted. Table 4 on page 128
specifies which unformatted sections are included for each type of FSI function call.

Summary of FSI Trace Output
The following table is arranged by FSI function calls. It gives a summary of the
sections that appear in the FSI trace output for each type of function call.

FSI Trace

Chapter 15. FSI Trace 127

Table 4. FSI Trace Output Summary

Event id Type of Function Call Formatted Sections Unformatted Sections

F54 Start FSA v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v ORDPARM (Common order section
parameter values)

v ORDSS (Start/Stop order parameter
values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v IAZRESPA (Order response area
parameter values)

v USERDATA (User trace data)

v RSV1

F54 Start device v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v ORDPARM (Common order section
parameter values)

v ORDSS (Start/Stop order parameter
values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v IAZRESPA (Order response area
parameter values)

v USERDATA (User trace data)

v RSV1

F54 Stop device v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v ORDPARM (Common order section
parameter values)

v ORDSS (Start/Stop order parameter
values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v IAZRESPA (Order response area
parameter values)

v USERDATA (User trace data)

v RSV1

F54 Stop FSA v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v ORDPARM (Common order section
parameter values)

v ORDSS (Start/Stop order parameter
values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v IAZRESPA (Order response area
parameter values)

v USERDATA (User trace data)

v RSV1

FSI Trace

128 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Table 4. FSI Trace Output Summary (continued)

Event id Type of Function Call Formatted Sections Unformatted Sections

F54 Stop FSS v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v ORDPARM (Common order section
parameter values)

v ORDSS (Start/Stop order parameter
values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v IAZRESPA (Order response area
parameter values)

v USERDATA (User trace data)

v RSV1

F54 Intervention Order v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v ORDPARM (Common order section
parameter values)

v ORDIV (Intervention order parameter
values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v IAZRESPA (Order response parameter
values)

v USERDATA (User trace data)

v RSV1

F54 Set Order v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v ORDPARM (Common order section
parameter values)

v ORDST (Set order parameter values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v IAZRESPA (Order response parameter
values)

v USERDATA (User trace data)

v RSV1

F54 Synch Order v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v ORDPARM (Common order section
parameter values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v IAZRESPA (Order response parameter
values)

v USERDATA (User trace data)

v RSV1

F54 Query Order v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v ORDPARM (Common order section
parameter values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v IAZRESPA (Order response parameter
values)

v USERDATA (User trace data)

v RSV1

FSI Trace

Chapter 15. FSI Trace 129

Table 4. FSI Trace Output Summary (continued)

Event id Type of Function Call Formatted Sections Unformatted Sections

F55 POST v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v POSTPARM (POST parameter values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v USERDATA (User trace data)

v RSV1

F56 GETDS v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v GDSPARM (GETDS parameter values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v IAZCHK

v IAZJSPA

v USERDATA (User trace data)

v RSV1

F57 GETREC v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v GLRPARM (GETREC parameter values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v USERDATA (User trace data)

v RSV1

v IAZIDX

F58 FREEREC v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v FLRPARM (FREEREC parameter values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v USERDATA (User trace data)

v RSV1

v IAZIDX

F59 RELDS v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v RDSPARM (RELDS parameter values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v USERDATA (User trace data)

v RSV1

F5A CHKPT v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v CHKPARM (Checkpoint parameter values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v USERDATA (User trace data)

v RSV1

F5B SEND v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v SNDPARM (Send parameter values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v IAZRESPA (Order response area
parameter values)

v USERDATA (User trace data)

v RSV1

FSI Trace

130 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Table 4. FSI Trace Output Summary (continued)

Event id Type of Function Call Formatted Sections Unformatted Sections

F5C FSA Connect v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v CDFPARM (Connect/Disconnect parameter
values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v USERDATA (User trace data)

v RSV1

v IEFJSSOB

v IEFJSSIB

v CDFPAIRS

v IAZFSIP

v GPRS

F5D FSS Disconnect v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v CDFPARM (Connect/Disconnect parameter
values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v USERDATA (User trace data)

v RSV1

v IEFJSSOB

v IEFJSSIB

v CDFPAIRS

F5D FSA Disconnect v Common Header

v IAZFSIP (IAZFSIP common header
parameter values)

v CDFPARM (Connect/Disconnect parameter
values)

v FSIGPRS (Contents of general purpose
registers R0 - R15)

v USERDATA (User trace data)

v RSV1

v IEFJSSOB

v IEFJSSIB

v CDFPAIRS

FSI Trace

Chapter 15. FSI Trace 131

132 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Appendix A. FSIREQ Parameter List

The mapping macro for the parameter lists of all of the FSI functions is IAZFSIP.
The FSS/FSA must provide storage for the parameter list when it issues FSIREQ
requests. This macro adheres to the following guidelines:

v A general header precedes the function-dependent parameter lists.

v Each parameter area begins on a fullword boundary. Further status information
for the specific request may be returned, depending on the service, in flag bytes
of the parameter/response area. Both successful completion and failure can have
more status to report.

A non-zero return code from an FSI request always indicates an abnormal
termination condition. Therefore, the FSS/FSA should abnormally terminate when
it receives a non-zero return code. The specific non-zero return code values for
all FSI functions depend on JES and FSS and are defined by the JES or FSS
owning the FSI routine.

Note: The FSS/FSA should take a dump when it receives a non-zero return code
from an FSI request.

For information about the proper location for the FSIREQ parameter list, see topic
26.

The following sections illustrate the storage maps for each section of the FSI
parameter list. The section that specifically deals with the corresponding function
contains the parameter descriptions.

CDFPAIRS
The following area consists of pairs of function IDs and their corresponding routine
entry point addresses. The number of pairs is specified by the value of the
CDFIDNO field.

0 CDFPAIRS

0 CDFID

4 CDFAD

Orders Parameter Section
The ORDER parameter list is made up of three separate sections:
v Common order header
v Variable order data section (dependent on the specified order)
v Order response area

Common Order Header
The common order header portion of the ORDER parameter list follows:

0 ORDFLGS1 RESERVED

4 ORDFDATA

8 ORDRSPAD

12 ORDID RESERVED

© Copyright IBM Corp. 1988, 2001 133

16 RESERVED

START/STOP Order Data Section

0 ORDSSSP

4 ORDSSF1 RESERVED ORDSSMX

8 ORDSSID

8 ORDSSSI ORDSSAI

12 ORDSSAD4

12 ORDSSAD RESERVED

16 ORDSSNA (an 8-byte field)

24 RESERVED

28 ORDSSSP2

32 RESERVED

36 RESERVED

Device Initialization Area for START FSA Order

0 ORDSSPF1 ORDSSPF2 ORDSSPF3 RESERVED

4 ORDSSKI

8 ORDSSNI

Message Routing Information Area for Start FSA Order

0 ORDSS2LN ORDSS2FL RESERVED

4 ORDSS2RC (a 16-byte field)

20 ORDSS2CN

24 RESERVED

28 RESERVED

32 RESERVED

SET Order Data Section

0 ORDSTRI RESERVED

4 ORDSTNI

8 RESERVED

12 RESERVED

16 RESERVED

20 RESERVED

FSIREQ Parameter Lists

134 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

SYNCH Order Data Section

0 ORDSYR1 ORDSYR2 ORDSYR3 ORDSYR4

4 ORDSYR5 ORDSYR6 RESERVED RESERVED

8 ORDSYNP

12 ORDSYKI

16 ORDSYCP RESERVED

20 ORDSYSMX

24 RESERVED

28 RESERVED

32 RESERVED

36 RESERVED

40 ORDSYMSG (a 120-byte field)

INTERVENTION Order Data Section

0 ORDIVF1 ORDIVF2 RESERVED

4 ORDIVBTT (an 8-byte field)

12 ORDIVFLT (an 8-byte field)

20 ORDIVFOT (an 8-byte field)

28 ORDIVCFT (an 8-byte field)

36 RESERVED

40 RESERVED

44 RESERVED

48 RESERVED

IAZRESPA - Order Response Data Area

0 RESPID

4 RESPLEN

8 RESPFL1 RESPFL2 RESERVED

12 RESPRETC

16 RESERVED

20 RESPCPYC RESERVED

24 RESPPGEC

28 RESPLREC

32 RESPOOPI (a 12-byte field)

44 RESERVED

48 RESERVED

52 RESERVED

56 RESERVED

FSIREQ Parameter Lists

Appendix A. FSIREQ Parameter List 135

GETDS Function Dependent Area
The GETDS parameter list contains the following information:

0 GDSFLGR1 GDSFLGR2 GDSFLGS1 RESERVED

4 GDSCKPL

8 GDSCKPA

12 GDSJSPA

16 GDSDDTK (an 8-byte field)

24 GDSOUTK (an 8-byte field)

32 GDSJDVTN (an 8-byte field)

40 GDSDSID (a 12-byte field)

52 RESERVED

56 GDSRECFM GDSMRECL RESERVED

60 RESERVED

64 RESERVED

GDSSJMSG (an 80-byte field)

GETDS Function Dependent Extension Area

0 FSIEGLEN FSIEGVSN

4 FSIEGFID

8 FSIEGUTK (80-byte field)

88 FSIEGRTK (80-byte field)

168 FSIEGOGT (20-byte field)

IAZJSPA - JES Job Separator Page Data Area

0 JSPAID

4 JSPALEN JSPAFLG1 RESERVED

8 JSPAJBNM (an 8-byte field)

16 JSPAJBID (an 8-byte field)

24 JSPADEVN (an 8-byte field)

32 JSPADEVA

36 JSPAJMR

IAZJSPA - JES Dependent Section

0 JSPAJES

0 JSPJGRPN (an 8-byte field)

8 JSPJGRP1 JSPJGRP2

12 JSPJGRPD (an 8-byte field)

20 JSPJRMNO

24 JSPJPNAM (a 20-byte field)

FSIREQ Parameter Lists

136 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

44 JSPJDSNM

44 JSPJDSPN (an 8-byte field)

52 JSPJDSSN (an 8-byte field)

60 JSPJDSDD (an 8-byte field)

68 JSPJSOCL JSPJPRIO not part of parameter list

IAZJSPA - User Dependent Section

0 JSPAUSER

0 JSPAUSR1

4 JSPAUSR2

GETREC Function Dependent Area

0 GLRFLGR1 RESERVED GLRFLGS1 RESERVED

4 GLRINDX

8 GLRECID (an 8-byte field)

16 GLRDSID (a 12-byte field)

28 RESERVED

32 RESERVED

36 RESERVED

40 RESERVED

IAZIDX - Index Returned by GETREC

Index Header Area

0 IDXID

4 IDXNUM IDXTOK

8 RESERVED

Index Entry

0 IDXENTRY

0 IDXENTRL IDXRECL

4 IDXFLAG1 RESERVED

8 IDXRADR

12 IDXRECID (an 8-byte field)

FREEREC Function Dependent Area
The FREEREC parameter list contains the following information:

0 FLRINDX

FSIREQ Parameter Lists

Appendix A. FSIREQ Parameter List 137

4 FLRDSID (a 12-byte field)

16 RESERVED

20 RESERVED

24 RESERVED

28 RESERVED

RELDS Function Dependent Area

0 RDSFLGS1 RESERVED

4 RDSDSID (a 12-byte field)

16 RESERVED

20 RDSMIDSE (an 8-byte field)

28 RESERVED

CHKPT Function Dependent Area

0 CHKADR

4 CHKFLGR1 RESERVED CHKFLGS1 RESERVED

8 CHKDSID (a 12-byte field)

20 RESERVED

24 RESERVED

28 RESERVED

32 RESERVED

IAZCHK - FSI Checkpoint Record

0 CHKID

4 CHKLNGTH RESERVED

8 CHKJESWK (a 64-byte field)

72 CHKRBA (an 8-byte field)

80 CHKDEV

84 CHKMOD

88 CHKCOPY

92 CHKTRNC

96 CHKREC

100 CHKPAGE

104 CHKPROD (an 8-byte field)

112 CHKVER

116 CHKRELS

120 CHKMODF

124 CHKSERV

FSIREQ Parameter Lists

138 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

POST Dependent Section

0 POSTFLS1 RESERVED

4 POSFDATA

8 RESERVED

SEND Dependent Section

0 SNDTYPE RESERVED

4 SNDRSPTR

8 RESERVED

FSIUDATA - User Trace Data Area

0 FSIUDLEN

4 FSIUDNAM (an 8-byte field)

12 FSIUDTXT (a maximum of 2000 bytes)

FSIREQ Parameter Lists

Appendix A. FSIREQ Parameter List 139

FSIREQ Parameter Lists

140 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Appendix B. Numeric Values of FSI Services and Orders

The following chart provides the absolute values for the FSI services that the
FSS/FSA specifies in the FSIFUNC field of the FSI parameter list (IAZFSIP).

Table 5. Numerical Values of FSIFUNC

FSI Service Numerical Value

FSICON 254

FSIDCON 255

FSIGDS 3

FSIRDS 6

FSIGREC 4

FSIFREC 5

FSICKPT 7

FSISEND 8

FSIORDER 1

FSIPOST 2

SNDTYRSP X’80’

The following chart provides the absolute values for the orders that the JES
specifies in the ORDID field of the order function dependent area of the FSI
parameter list (IAZFSIP).

Table 6. Numerical Values of ORDID

FSI Order Numerical Value

ORDSPFSS 4

ORDSTFSA 8

ORDSPFSA 12

ORDSTDEV 16

ORDSPDEV 20

ORDQUERY 24

ORDSET 28

ORDSYNCH 32

ORDINTV 36

© Copyright IBM Corp. 1988, 2001 141

142 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Appendix C. Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2001 143

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Programming Interface Information
This book is intended to help the customer write and install a function subsystem
(FSS) and its functional subsystem application (FSA). This book primarily
documents Product-sensitive Programming Interface and Associated Guidance
Information provided by z/OS.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
z/OS. Use of such interfaces creates dependencies on the detailed design or
implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new product releases or versions, or as a result of service.

144 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

However, this book also documents Diagnosis, Modification or Tuning Information,
which is provided to help the customer to do diagnosis of z/OS.

Attention: Do not use this Diagnosis, Modification or Tuning Information as a
programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs by an
introductory statement to a chapter or section or by the following marking:

Diagnosis, Modification or Tuning Information

Diagnosis, Modification or Tuning Information

End of Diagnosis, Modification or Tuning Information

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AIX/ESA
v AIX/6000
v BookManager
v CD Showcase
v IBM
v IBMLink
v MVS/ESA
v OS/2
v RACF
v Resource Link
v VTAM
v S/390
v z/OS

Other company, product, and service names may be trademarks or service marks
of others.

Appendix C. Notices 145

146 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Glossary

This glossary defines JES terms, FSS terms and
other terms used in this publication. For definitions
of terms not included in this glossary, see
Dictionary of Computing, New York: McGraw Hill,
1994.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its
definitions from the American National Standard
Vocabulary for Information Processing (copyright
1970 by American National Standards Institute,
Inc.), which was prepared by Subcommittee X3K5
on Terminology and Glossary of American National
Standards Committee X3. A complete commentary
taken from ANSI is identified by an asterisk (*) that
appears between the term and the beginning of
the commentary; a single definition taken from
ANSI is identified by an asterisk after the item
number for that definition.

amode. Addressing mode. A program attribute that can
be specified (or defaulted) for each CSECT, load
module, and load module alias. AMODE states the
addressing mode that is expected to be in effect when
the program is entered.

authorized program facility (APF). A facility that
permits identification of programs authorized to use
restricted functions.

buffered device. A device where the data is written to
a hardware buffer in the device before it is placed on
the paper (for example, IBM 3820).

checkpoint. (1) *A place in a routine where a check,
or a recording of data for restart purposes, is performed.
(2) A point at which information about the status of a job
and the system can be recorded so that the job step
can be restarted later.

checkpoint write. Any write to the checkpoint data
set. A general term for the primary, intermediate, and
final writes that update any checkpoint data set.

data integrity point. The generic name given to the
point in the 3800 model 3 printing process at which the
data is known to be secure. (Also called the stacker.)

data set separator pages. Those pages of printed
output that delimit data sets

drain. Allowing a printer to complete its current work
before stopping the device.

forwarding. The dynamic replacement of the
checkpoint data set specifications (data set name and
volume) with new specifications.

FSA startup. That part of system initialization when
the FSA is loaded into the functional subsystem address
space and begins initializing itself.

FSI connect. The FSI communication service which
establishes communication between JES2/JES3 and the
FSA or functional subsystem.

FSI disconnect. The FSI communication service
which severs the communication between JES2/JES3
and the FSA or functional subsystem.

FSI services. A collection of services available to
users of the FSI. These services comprise
communication services, data set services, and control
services.

functional subsystem (FSS). An address space
uniquely identified as performing a specific function
related to the JES.

functional subsystem application (FSA). The
functional application program managed by the
functional subsystem.

functional subsystem interface (FSI). The interface
through which JES2 or JES3 communicate with the
functional subsystem.

functional subsystem startup. That process part of
system initialization when the functional subsystem
address space is created.

JES2. An MVS subsystem that receives jobs into the
system, converts them to internal format, selects them
for execution, processes their output, and purges them
from the system. In an installation with more than one
processor, each JES2 processor independently controls
its job input, scheduling, and output processing.

JES3. An MVS subsystem that receives jobs into the
system, converts them to internal format, selects them
for execution, processes their output, and purges them
from the system. In complexes that have several
loosely-coupled processing units, the JES3 program
manages processors so that the global processor
exercises centralized control over the local processors
and distributes jobs to them via a common job queue.

job entry subsystem (JES). A system facility for
spooling, job queuing, and managing the scheduler
work area.

job separator page data area (JSPA). A data area
that contains job-level information for a data set. This
information is used to generate job header, job trailer or
data set header pages. The JSPA can be used by an
installation-defined JES2 exit routine to duplicate the
information currently in the JES2 separator page exit
routine.

© Copyright IBM Corp. 1988, 2001 147

job separator pages. Those pages of printed output
that delimit jobs.

operator observation point. The generic name given
to the point in the 3800 model 3 printing process at
which the data becomes visible to the operator, and is
therefore the point at which all operator commands are
directed. (Also called the transfer station.)

rmode. Residency mode. A program attribute that can
be specified (or defaulted) for each CSECT, load
module, and load module alias. RMODE states the
virtual storage location (either above 16 megabytes or
anywhere in virtual storage) where the program should
reside.

spanned record. A logical record contained in more
than one block.

subsystem interface (SSI). An MVS component that
provides communication between MVS and JES.

system management facilities (SMF). An optional
control program feature of OS/360 and OS/VS that
provides the means for gathering and recording
information that can be used to evaluate system usage.

transmission. The number of copies of a data set that
are to be printed by the FSA. The FSA extracts this
number from the SWB and is responsible for reprinting
the data set.

148 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Index

A
accessing FSI services 3, 13, 15
address space communication, types

between JES2 and FSS 2
between JES3 and FSS 3

amode
definition 147

C
checkpoint

definition 147
CHKPT

description 83
command scheduler communications list

retrieving information from 35
specifying address on EXTRACT macro 35

communication method between JES and FSS/FSA 2
communication services

description 3
communications event control block

obtaining pointer to 31
CONNECT

parameter list
initializing by FSA 42
initializing by FSS 32

preparing for FSA level 42
preparing for FSS-level 32
processing

FSA level 37, 44
FSS level 29, 35

control services
description 5

copy mark requirements 56
cross memory

establishing environment 35

D
data access services

description 5, 51
data integrity point

definition 147
data set

getting 25, 51, 67
header

requirements returned by GETDS service 56
identifier 54
JES spacing requirements 40
printing requirements returned by GETDS 56
selection criteria 52
tracking processing

requirement returned by GETDS 56
data set separator pages

definition 147
definition

checkpoint 147

definition (continued)
data integrity point 147
data set separator pages 147
FSA startup 147
FSI connect 147
FSI disconnect 147
FSI services 147
functional subsystem 147
functional subsystem application (FSA) 147
functional subsystem interface 147
functional subsystem startup 147
job entry subsystem 147
job separator page data area 147
job separator pages 148
operator observation point (OOP) 148
system management facilities 148

definition of terms 147
device

address
in START device order parameter list 49
in START FSA order parameter list 40

allocating 37
characteristics

in START FSA order parameter list 40
initializing 37, 41
name

in START device order parameter list 49
in START FSA order parameter list 40

starting 47, 49
device stopped

notifying JES 103

E
establishing

FSA/JES communication 37, 44
FSS/JES communication 29, 35

ESTAE routine 31
example

FSS interface example 6
EXTRACT macro

format 31

F
form mark requirements 56
FREEREC

description 76
FSA

checkpoint area
creating 53
function 53
information returned by GETDS service 64
specifying in GETDS parameter list 54
status upon return from GETDS 57

connecting to JES
errors 45

© Copyright IBM Corp. 1988, 2001 149

FSA (continued)
initializing CONNECT parameter list 42
issuing FSIREQ CONNECT request 44
preparation 42
processing 44
timing considerations 45

definition 147
description 1
FSA-initiated termination 108
FSI services provided by 5

identifying routines to JES 15
linkage conventions 15

getting
a data set 25, 51, 67
records 69

identifier
in START FSA order parameter list 40
specifying on FSIREQ macro 15

initializing 41
means of communication with JES 2
POST routine 25, 66
processing data sets

supporting restart situations 53
processing POST requests 25, 67
relationship to FSS 1
responding to START FSA order 42

timing considerations 45
starting 37, 42
starting device 47, 49
stopping

response to unsuccessful FSA CONNECT 45
stopping an FSA 105
tracking a data set

notifying JES when data set reaches OOP 67
requirement returned by GETDS 56

FSA disconnect
FSIREQ disconnect parameter list 107
initializing the FSIREQ disconnect parameter

list 107
issuing the FSIREQ disconnect request 108
preparing for 107

FSA startup
definition 147

FSCT
creating

FSS level 35

FSI

concepts 1
description 2
establishing

FSA-level 37, 44
FSS-level 29, 35

invoking services 3, 13
processing, overview 7, 10
services

control services 5
data access services 5
description 3
return codes 15
specifying type on FSIREQ macro 13

FSI CHKPT service
definition 5
specifying on FSIREQ macro 14

FSI communication services
description 3

FSI connect
definition 147

FSI CONNECT service
definition 3
invoking

for FSA CONNECT 44
for FSS CONNECT 35

processing
FSA level 37, 44
FSS level 29, 35
FSS-level 35

specifying on FSIREQ macro 14, 35
FSI control services

description 5
FSI data access services

description 5
FSI disconnect

definition 147
FSI DISCONNECT service

definition 4
specifying on FSIREQ macro 14

FSI FREEREC service
definition 5
specifying on FSIREQ macro 14

FSI GETDS service
definition 5
description 51
information returned to FSA

FSA checkpoint area 64
GETDS parameter list 55

invoking 54
processing 54

no work available 55, 65
specifying on FSIREQ macro 14

FSI GETREC service
definition 5
specifying on FSIREQ macro 14

FSI macros
FSIREQ 3, 13, 17
iazfsip 133
IAZFSIP 3

FSI ORDER
service/routine 87

FSI ORDER service
definition 4
specifying address in CONNECT parameter list 34
specifying on FSIREQ macro 14
types of orders 4

FSI POST service
definition 5
notifying FSA when work exists 25, 66
processing 25, 67
specifying on FSIREQ macro 14

FSI RELDS service
definition 5
specifying on FSIREQ macro 14

150 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

FSI SEND service
definition 4
invoking 23, 69
notifying JES when data set reaches OOP 67
processing 100

for START device order 49
specifying on FSIREQ macro 14

FSI services
definition 147
description 3

communication services 3
invoking 3, 13, 15
linkage conventions 15
numeric values 141
register conventions on entry 15
return codes 15
specifying type on FSIREQ macro 13
types 3

FSI trace 123
FSID 15

keyword of FSIREQ macro 15
FSIFUNC field of FSI parm list

numeric values 141
FSIREQ disconnect

issuing the request and associated processing 114
parameter list 113

FSIREQ macro
definition 3
description 13, 17
execution 15
format 13
parameters

FSID keyword 15
PARM keyword 14
REQUEST keyword 13
TARGET keyword 14

return codes 15
FSIREQ parameter list

function 3, 13
IAZFSIP mapping macro, description 133

CHKPT section 138
common order header 133
FREEREC section 137
FSIUDATA 139
GETDS section 136
GETREC section 137
INTERVENTION order section 135
POST section 139
RELDS section 138
SEND section 139
SET order section 134
START/STOP order section 134
SYNCH order section 135

specifying address on FSIREQ macro 14
storage maps 139

FSIREQ send parameter list
format and contents 109

FSS
connecting to JES

errors 35
initializing CONNECT parameter list 32

FSS (continued)
connecting to JES (continued)

issuing FSIREQ CONNECT request 35
preparation 32
processing 35
timing considerations 36

dependencies on JES 1
description 1
disconnecting from JES

response to unsuccessful FSS CONNECT 35
FSI services provided by 5

identifying routines to JES 15, 29
linkage conventions 15

identifier
on MVS START command 30
retrieving from CIB 31
specifying on FSIREQ macro 15

initialization statements for JES2 11
initialization statements for JES3 12
initializing, required procedures 30
installing 11
means of communication with JES 2
output descriptor information 117
responsibilities 1
sample JCL used to start the FSS 12
starting 29
starting an FSA 38, 42

responding to unsuccessful start 45
stopping an FSS 111
working sample of the FSS interface 6

FSS device, stopping 101
FSS disconnect

preparing for 113
FSS interface sample

to start an FSS 6
FSSDEF initialization statement

creating MVS START command from 29
parameters

relationship to MVS START command
parameters 29

FSVT
initializing 35

functional subsystem
definition 147
installing 11

functional subsystem application (FSA)
definition 147

functional subsystem interface
definition 147

functional subsystem startup
definition 147

G
GETDS

parameter list
information returned by FSI service 55
initializing 53

preparation 53
processing 54

information returned by FSI service 55

Index 151

GETDS (continued)
no work available 55, 65

service
description 51
invoking 54
preparation 69

GETREC
description 69

getting
a data set 25, 51, 67
records 69

glossary 147

I
IAZCHK

creating FSA checkpoint area 53
information returned by GETDS service 64
storage map 138

IAZFSIP mapping macro
definition 3, 13
description 133
obtaining storage for 32

IAZIDX
storage map 137

IAZJSPA
obtaining pointer to 57
storage map 136

IAZRESPA
initializing 67

unsuccessful FSA start 45
storage map 135

intervention order
definition 4
parameter list 98
processing 97

invoking FSI services 3, 13, 15

J
JCL

OUTPUT statement 57
JCL procedure, sample

to start an FSS 12
JES

CONNECT processing
FSA-level 44
FSS-level 35

establishing cross memory environment 35
FSI services provided by 5

identifying routines to FSS 15
job separator page area (IAZJSPA) 136

storage map 136
management of FSS 1
means of communication with the FSS/FSA 2
monitoring timing

of FSA CONNECT 45
of FSS CONNECT 36

notifying FSA when work exists 25, 66
printing requirements for data set 56
processing requirements for FSS device 40
responding to device orders from 87

JES (continued)
starting

device 47, 49
FSA 37, 42
FSS 29

subsystem name (ssname)
retrieving from CIB 31
specifying on MVS START command 30

JES disconnect
processing 110

JES SEND
processing 100

JES2
address space communication with FSS, types 2
FSS-related initialization statements 11

JES3
address space communication with FSS, types 3
FSS-related initialization statements 12

JESNEWS data set, printing requirements 56
job entry subsystem

definition 147
job header

requirements returned by GETDS service 56
job separator page data area

definition 147
job separator pages

definition 148
job trailer

requirements returned by GETDS service 56

M
macros

FSIREQ 3, 13, 17
iazfsip 133
IAZFSIP 3

mapping FSIREQ parameter lists 3
means of communication between JES and

FSS/FSA 2
MVS START command

format 29
parameters 30

relationship to FSSDEF parameters 29

N
non-process runout timer specification 41
Notices 143
notifying

FSA when work exists 25, 66
JES when data set reaches OOP 67

notifying JES when the device is stopped 103
NPRO timer specification 41
numeric values of FSI services 141

O
OOP (operator observation point) 67
operator observation point (OOP) 67

definition 148
order response area

format and contents 22

152 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

orders
responding to device orders from JES 87
types 4

output descriptor information
token 57

output descriptors
using SJF services to retrieve output descriptor

information 118
OUTPUT JCL statement 57
OUTPUT processing

overview 117

P
PARM keyword of FSIREQ macro 14
POST

parameter list
initializing by JES 25, 66

processing 25, 67
preparing for FSA disconnect 107

Q
query order

definition 4
examples of JES commands resulting in a query

order 87
parameter list 88
processing the query order 87

R
register conventions for FSI services 15
relationship between an FSS and JES 1
RELDS

description 79
REQUEST keyword of FSIREQ macro 13
RETRIEVE service (SJF) 119

issuing the request and processing 121
keyword list 119
parameter list 119

return codes, FSIREQ macro 15
rmode

definition 148

S
sample

FSS interface 6
save area

providing for FSIREQ CONNECT 32
providing for FSIREQ CONNECT request 42

scheduler JCL facility 117
error message returned by GETDS service 58
processing

error detected by GETDS service 57
RETRIEVE request 119

SEND
invoking FSI service 23, 69
notifying JES when data set reaches OOP 67
parameter list

initializing 68

SEND (continued)
processing 49

send parameter list
format and contents 109

set order
definition 4
examples of JES commands resulting in a set

order 89
parameter list 90
processing 89

SJF
requirements for using SJF services 118
using SJF services 118

SJF RETRIEVE service
issuing the request and processing 121
keyword list 119
parameter list 119

spacing requirements for data sets 40
SSI (subsystem interface) 15
SSOB/SSIB pair

obtaining storage for 32
start an FSS

sample FSS interface 6
sample JCL 12

start device order
definition 4
description 47
parameter list

description 48
information contained in 48

start FSA order
definition 4
description 38
parameter list

description 38
information contained in 38, 41

processing by FSS 42
responding to JES

successful start 42
timing considerations 45
unsuccessful start 45

starting
device 47, 49
FSA 37, 42
FSS 29

stop device order
definition 4

stop FSA order
definition 4
parameter list 105
processing 105
response to unsuccessful FSA CONNECT 45

stop FSS order 101
definition 4
parameter list 102, 111
processing 101, 111

stopping
FSA

response to unsuccessful FSA CONNECT 45
stopping an FSA 105
stopping an FSS device 101

Index 153

subsystem interface 2

CONNECT processing 35

subsystem interface (SSI) 15

synch order

definition 4
determining synch action to be performed 96
examples of JES commands resulting in a synch

order 91
parameter list 92
processing 91

system management facilities

definition 148

T
TARGET keyword of FSIREQ macro 14

task control block (TCB) 30

TCB (task control block) 30

terms, definition of 147

154 z/OS V1R1.0 MVS Using the Functional Subsystem Interface

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Using the
Functional Subsystem Interface

Publication No. SA22-7641-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7641-00

SA22-7641-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7641-00

	Contents
	Figures
	Tables
	About This Book
	Who This Book Is For
	How This Book Is Organized
	How to Use This Book
	Determining if a Publication is Current
	Using LookAt to look up message explanations

	Summary of Changes
	Chapter 1. Functional Subsystem Interface Concepts
	What is a Functional Subsystem?
	Managing an FSS

	What is a Functional Subsystem Application?
	What is the Functional Subsystem Interface?
	Invoking the FSI
	FSI Services
	Communication Services
	Data Access Services
	Control Services

	FSS Interface Example

	Chapter 2. An Overview of FSI Processing
	FSS Startup
	FSI Data Set Processing
	FSS Shutdown

	Chapter 3. Installing a Functional Subsystem
	FSS-Related Initialization Statements
	JES2 FSS-Related Initialization Statements
	JES3 FSS-Related Initialization Statements

	Defining JCL Procedure Used to Start an FSS

	Chapter 4. The FSIREQ Macro
	FSIREQ Macro Format
	FSIREQ Macro Execution

	Chapter 5. FSI Communication
	Order Processing - Communication from JES to the FSS/FSA
	The FSI Order Routine
	Order Processing Parameter List
	Function of the FSI Order Routine
	Coding Considerations

	Responding to an Order - Communication from the FSS/FSA to JES
	Send Processing in Response to an Order
	Initializing the Order Response Area

	Issuing the FSIREQ SEND Request
	Unsolicited Send Processing
	Initializing the FSIREQ Parameter List

	CONNECT/DISCONNECT Processing in Response to an Order

	Post Processing
	The FSI Post Routine
	Function of the FSI Post Routine
	Post Processing Parameter List

	Types of Orders
	Addressing Mode - AMODE
	Pointer-defined Linkage

	Residency Mode - RMODE

	Chapter 6. Establishing FSS/JES Communication
	Starting an FSS
	Initializing the FSS Address Space
	Retrieving the MVS START Command and Token

	Preparing for FSS CONNECT
	Initializing the FSS Level FSIREQ CONNECT Parameter List
	Issuing the FSS Level FSIREQ CONNECT Request

	FSS CONNECT Processing
	How JES Handles Logic Errors and Abends

	How JES Monitors Timing of FSS CONNECT

	Chapter 7. Establishing FSA/JES Communication
	Processing the START FSA Order
	Initializing the FSA

	FSA Successfully Started
	Preparing for FSA CONNECT
	Initializing the FSIREQ Connect Parameter List
	Issuing the FSA Level FSIREQ CONNECT Request

	FSA CONNECT Processing
	How JES Handles Logic Errors and Abends
	How JES Monitors Timing of FSA CONNECT

	FSA Could Not Be Started

	Chapter 8. Starting an FSS Device
	Processing the START Device Order
	Notifying JES of Device Status
	SEND Processing

	Chapter 9. Issuing Data Requests to JES
	Getting a SYSOUT Data Set (GETDS)
	Providing an FSA Checkpoint Area
	Initializing the GETDS Parameter List
	Issuing the FSIREQ GETDS Request
	JES GETDS Processing
	Information Returned from GETDS Processing
	Information Contained in the JSPA
	Information Contained in the FSA Checkpoint Area

	No Work Exists for Printing
	Notifying the FSA When Work Becomes Available
	Processing the FSIREQ POST Request

	Notifying JES that the Data Set Reached the OOP
	Initializing the Order Response Area
	Initializing the SEND Parameter List
	Issuing the FSIREQ SEND Request

	Getting SYSOUT Records from an Acquired Data Set
	Specific Record Retrieval
	Initializing the GETREC Parameter List
	Issuing the FSIREQ GETREC Request
	JES GETREC Processing
	Information Returned in GETREC Parameter List
	Information Contained in Index

	Releasing a SYSOUT Record
	Initializing the FREEREC Parameter List
	Issuing the FSIREQ FREEREC Request
	JES FREEREC Processing
	Status of Request Returned by JES

	Releasing a SYSOUT Data Set
	Data Set Processing Status
	Initializing the RELDS Parameter List
	Issuing the FSIREQ RELDS Request
	JES RELDS Processing
	Status of Request Returned by JES

	SMF Record Writing

	Requesting a Checkpoint of Processing
	Purpose of the FSI CHKPT Service
	Preparing for Checkpointing
	Initializing the FSI Checkpoint Record
	Initializing the CHKPT Parameter List
	Issuing the FSIREQ CHKPT Request

	JES CHKPT Processing
	Bad Checkpoint Record Detected by JES

	Chapter 10. Responding to Device Orders From JES
	The Query Order
	Examples of JES Commands Resulting in a Query Order
	Processing the Query Order

	The Set Order
	Examples of JES Commands Resulting in a Set Order
	Processing the Set Order

	The Synch Order
	Examples of JES Commands Resulting in a Synch Order
	Processing the Synch Order
	Determining Synch Action to be Performed

	The Intervention Order
	Processing the Intervention Order

	Notifying JES of Order Completion
	SEND Processing

	Chapter 11. Stopping an FSS Device
	Processing the STOP Device Order
	Notifying JES When the Device is Stopped
	SEND Processing

	Chapter 12. Stopping an FSA
	Processing the STOP FSA Order
	Preparing for FSA Disconnect
	Initializing the FSIREQ DISCONNECT Parameter List
	Issuing the FSIREQ DISCONNECT Request

	FSA-Initiated Termination
	Initializing the FSIREQ SEND Parameter List
	Issuing the FSIREQ SEND Request
	SEND Processing

	DISCONNECT FSA Processing
	How JES Handles Logic Errors and Abends

	How JES Monitors Timing of FSA DISCONNECT

	Chapter 13. Stopping an FSS
	Processing the STOP FSS Order
	Preparing for FSS Disconnect
	Initializing the FSIREQ DISCONNECT Parameter List
	Issuing the FSIREQ DISCONNECT Request

	DISCONNECT FSS Processing
	How JES Handles Logic Errors and Abends

	How JES Monitors Timing of FSS DISCONNECT

	Chapter 14. FSS Output Descriptor Support
	The Scheduler JCL Facility
	An Overview of OUTPUT Processing

	Using SJF Services
	Requirements for Using SJF Services

	The Scheduler JCL Facility RETRIEVE Request
	Initializing the Keyword List
	Establishing a Storage area
	Initializing the SJF RETRIEVE Parameter List
	Issuing the SJFREQ RETRIEVE Request
	SJF RETRIEVE Processing
	Information Returned from SJF RETRIEVE Processing
	Support for ESS Keywords
	Writing Information into SMF Records

	Chapter 15. FSI Trace
	Using GTF to Trace FSI Communication
	Starting GTF
	Specifying GTF Trace Options
	Recreating the Problem
	Stopping GTF

	Viewing FSI Trace Data
	Reading GTF Records
	Summary of FSI Trace Output

	Appendix A. FSIREQ Parameter List
	CDFPAIRS
	Orders Parameter Section
	Common Order Header

	START/STOP Order Data Section
	Device Initialization Area for START FSA Order
	Message Routing Information Area for Start FSA Order

	SET Order Data Section
	SYNCH Order Data Section
	INTERVENTION Order Data Section
	IAZRESPA - Order Response Data Area

	GETDS Function Dependent Area
	GETDS Function Dependent Extension Area
	IAZJSPA - JES Job Separator Page Data Area
	IAZJSPA - JES Dependent Section
	IAZJSPA - User Dependent Section

	GETREC Function Dependent Area
	IAZIDX - Index Returned by GETREC
	Index Header Area
	Index Entry

	FREEREC Function Dependent Area
	RELDS Function Dependent Area
	CHKPT Function Dependent Area
	IAZCHK - FSI Checkpoint Record

	POST Dependent Section
	SEND Dependent Section
	FSIUDATA - User Trace Data Area

	Appendix B. Numeric Values of FSI Services and Orders
	Appendix C. Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

